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After three days of enjoyable argument with John Holland and Leeann Fu in the summer of 1998, this
paper is what I wished I had said.1 Most of it was written shortly after that summer. Since Holland so
enjoys productive academic argument (discussion?), I have written this in the style of an attack on his
position. And I think this style helps clarify the issues. Holland’s academic viewpoint and the wealth of
his ideas have given many of us our research inspiration and direction. In a sense, this paper is a thank
you, for the ideas, for the encouragement, and for all the fun. Peter Woolf’s observation sums it up: “Do
you guys always argue like this?”

Terminology: In this paper I use the word schema the way Holland uses it.
(See my explanation in footnote 2, added May 2024.2)

1 What Does Fitness Mean?
“Typically when Darwin is discussing flora and fauna, fitness means reproductive success; how-
ever, when he is discussing human populations fitness suddenly no longer means reproductive
success, as that would entail recognising the poor with their large families as the fittest. Sud-
denly ‘fitness’ becomes suffused with the dominant social values of his time, filled with the ideas
of social progress and superiority that elsewhere are given no tolerance in Darwinian theory.
This ambiguity around ‘fitness’ – not to say downright slipperiness – in the original Darwin
texts means that this central concept sits there almost asking to be recruited around any po-
litical project, typically by the social conservatives but also by social revolutionaries.” (Hilary
Rose [17])

“Reproduction is a process in which individual strings are copied according to their objective
function values, f (the biologists call this function the fitness function). Intuitively, we can think
of the function f as some measure of profit, utility, or goodness that we want to maximise.
Copying strings according to their fitness values means that strings with higher value have a
higher probability of contributing one or more offspring to the next generation.”
(Goldberg [8, page 10])

In this paper, I shall use two terms, “value” and “reproductive rate”. An individual or schema in a
population will often have both a value and a reproductive rate. Its value is its profit, utility, or goodness,
to use Goldberg’s words. Value is what Goldberg calls fitness value. In genetic algorithms, the value is
usually a number. On the other hand, reproductive rate is just what it says, reproductive rate. In a genetic
algorithm or in an artificial breeding experiment, we might set reproductive rate equal to the value, or we
might not. Usually we set it to some (usually monotonic) function of value.

Does the term “fitness” mean value or reproductive rate? Unfortunately the literature is so contradictory
that the term is best avoided. We can see that to Goldberg, fitness means value. But he is wrong in thinking

1Sections 14-19 were added at a later date and do not pertain to the original argument. They contain an idea that may be
new and they are in this paper because they need its notation and results. The rest of the paper is mostly standard material
and the main contribution here is its organization and its viewpoint.

2In this paper, I use the word schema the way Holland uses it.[12] Consider a population of haploid individuals all belonging
to the same species. Each individual can be regarded as a string of alleles. A substring is a schema. As Holland says, each
substring (schema) specifies a set of genotypes, the set of all possible genotypes that contain that substring (schema). For
Holland, the substring is the schema, but for many genetic algorithms researchers, the set is the schema. In this paper it is the
substring that we call a schema. A schema of length 1 is of course an allele. Holland generalised the notion of schema to allow
gaps in the substring, but that will not be important in this paper. We have been speaking of haploid organisms, but obviously
the notion of schema is relevant to organisms of any ploidy. The notion of schema is simply a generalisation of the notion of
allele. In an evolving population, just as each allele has a reproductive rate, so does each schema.
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that this is the usual biological usage, and I have never seen the term “fitness function” in the biological
literature. To Darwin, the term fitness was evidently slippery enough to mean either.

In a genetic algorithm, an individual’s value is how well it succeeds at the assigned tasks in a given
environment. If the assigned task is simply to reproduce, then the value is by definition equal to the
reproductive rate. This is the situation in much of the population genetics literature, where wild populations
are often being discussed. For this reason, it is sometimes hard to tell in this literature whether the term
“fitness” is being used (1) to mean value or (2) to mean reproductive rate. A sentence like “Fitness is the
reproductive rate.” is an assertion of fact in case (1) and merely a definition in case (2). When we look in
the biological literature, we see much of the slippery ambiguity that evidently occurs in Darwin.

For example, Fisher’s fundamental theorem of natural selection says,

“The rate of increase in fitness of any organism at any time is equal to its genetic variance in
fitness at that time.” (Fisher [6, page 37])

But what does Fisher mean by a “fit” organism? He says,

“.... whenever then, the socially lower occupations are more fertile, we must face the paradox
that the biologically successful members of our society are to be found principally among its
social failures, and equally that classes of persons who are prosperous and socially successful are,
on the whole, the biological failures, the unfit of the struggle for existence, doomed more or less
speedily, according to their social distinction, to be eradicated from the human stock.”
(Fisher [6, page 241])

So here, the rapidly reproducing “lower occupations” are the more fit, and fitness means reproductive rate.
But ten pages later, he says,

“Eugenists agree that the rising generation is largely recruited from the less fit. This is attributed
partly to the fact that the upper classes marry later and partly to the fact that apart from the
question of the postponement of marriage the upper classes are less prolific than the lower.”
(Fisher [6, page 251])

So here the less prolific “upper classes” are the more fit, and fitness means what Fisher thinks of as value.
Slippery indeed.

But surely Fisher says clearly how he is using the term “fitness” in the theorem. Surely we need only
find the sentence in [6] where he defines fitness. His other terms are all defined when they are first used, in
sentences in which the defined word is italicised.

Unfortunately I can find no such definition of fitness. Fisher seems to regard “fitness” as a non-technical
term whose meaning is already clear to the reader. On page 26 he says, “let us represent the relative rate
of increase by m”, and then on page 37, just before the statement of the theorem, he introduces the term
“fitness” for the first time with the sentence,

“Since m measures fitness by the objective fact of representation in future generations, the quan-
tity Σ′(2paα) will represent the contribution of each factor to the genetic variance in fitness.”
(Fisher [6, page 37])

The term “fitness” is not italicised and this seems to me to be a case of using the sentence, “Fitness is
reproductive rate,” not as a definition, but as an assertion of fact, an assertion that relies on assuming that
the reader knows that the word “fitness” means what I am calling value.

So evidently for Fisher, “fitness” is an informal term that often means value, but sometimes means
reproductive rate. It is not surprising to find that later population genetics books have tried to be more
careful and formal in their use of the term.

“Before we can calculate how the frequencies of genes in a population will change in time, we
need some measure of the survival and reproduction of the different genotypes. This measure is
fitness [his emphasis], which has a technical meaning in population genetics. The definition is
easiest for populations with separate generations. .... Then the fitness of a particular type, A, is
the expected number of offspring contributed by an A individual to the next generation.”
(John Maynard Smith [19, page 36])

“We have used the word fitness as a synonym for the selective or reproductive value of a genotype.
It may be either an absolute value, measured by the number of progeny per parent, or it may be
relative to some reference genotype.” (Crow and Kimura [2, page 224]
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In these two quotes, “fitness” clearly means reproductive rate. It seems to me that this meaning is the
common meaning in population genetics.

What is the practice in genetic algorithms?

“In beginning this exploration we can make good use of a concept from mathematical genetics.
The action of the environment E ∈ E upon the phenotype (and thereby upon the genotype
A ∈ A) is typically summarized in mathematical studies of genetics by a single performance
measure µE called fitness [his italics].” (Holland [12, page 12])

“In very general terms, each element of the population is tested against the environment and is
ranked according to its fitness – its ability to survive and reproduce.” (Holland [12, page 33])

“First, the number of offspring of each individual A in a finite population A(t) is determined
probabilistically, so that the expected number of offspring of A is proportional to A’s observed
fitness µE(A).” (Holland [12, page 34])

Holland seems as slippery as Darwin and Fisher evidently are.
I think that most, but not all, of the genetic algorithms literature uses “fitness” to mean what I call

value, as in the Goldberg quote above. By contrast, most, but not all, of the biological literature uses
“fitness” to mean reproductive rate, as in the John Maynard Smith quote above. The early seminal writings
on population genetics and genetic algorithms both seem particularly slippery.

I shall avoid the term “fitness” and use the terms “value” and “reproductive rate” instead. If I quote the
literature, I will replace the term “fitness” with “value” or “reproductive rate” as is appropriate.3

In an evolving population, individuals, genotypes, and schemata necessarily have reproductive rates. And
given that we fix our attention on some quality of the individuals, each individual has a value. If the quality
is reproductive success, then the value presumably equals reproductive rate.

But do schemata have values in any meaningful sense? That is the question in the title of this paper,
and it is the purpose of this paper to answer it. The answer here is not original. In fact, it is the standard
answer that can be found (at least for schemata of length one) in most population genetics texts. But the
examples in those texts are often not in a form natural to people working with genetic algorithms. In this
paper, I have extended the examples in [2] to cover cases more familiar to genetic algorithms people. We
will see that many of the narrowing assumptions in genetic algorithms formalism are unnecessary and that,
in spite of his abhorrent views of human society, Fisher has much to tell us of how populations evolve. We
will see that we need not follow Holland’s restricting assumptions, which is pleasing since those assumptions
could be used to underpin the sort of views that we glimpsed in the quotes from Fisher. It is also pleasing
because it indicates that genetic algorithms may be more useful than those assumptions would imply.

2 Holland’s Story
At any time, an evolutionary system has estimates of the values of schemata. It could at that point concen-
trate on exploiting the information it has already and produce lots of copies of what it thinks are the best
schemata, or it could concentrate on exploring the schemata it knows less about, producing lots of copies of
unexplored schemata. Exploitation produces the highest expected short term payoff at the cost of postpon-
ing discovery of even better schemata. An appropriate balance between exploration and exploitation is the
essence of a good adaptive system, achieving reasonable payoff while exploring for even better opportunities.
In Genetic Algorithms, exploration and exploitation mesh gracefully and reinforce each other.

The value of a schema is defined to be the average of the values of the individuals that contain the schema.
At least that’s what Holland says. Evolution (in biology or in a genetic algorithm) works by reproducing
valuable schemata more rapidly than others. To do this, the evolutionary mechanism must estimate schema
values. It does this by taking a statistical sample of individuals that contain a schema, and taking the average
of the values of the individuals in the sample. It uses this average as an estimate of the schema value. The
evolutionary mechanism uses a succession of populations, produced by either synchronous or a asynchronous
reproduction, each population containing a sample of individuals that contain the schema. It thus obtains a
succession of estimates of the schema value. At each stage, reproductive rate is proportional to the current
estimate, so the more valuable schemata, having presumably higher value estimates, reproduce more rapidly

3Of course “value” is also a loaded term, but I’m using it to mean whatever we want to measure: size, speed of glycolysis
at neutral pH, frequency of attendance at New York Yankees baseball games, whatever. I’m using “value” as in “x has the
value 3,” not as in “an Oxford degree has more value than a Birkbeck degree.” Perhaps I should find another word, but at least
“value” is never used in the literature to mean reproductive rate, unless reproductive rate is what we want to measure.

3



and thus their successive samples are larger and larger and hence their value estimates become more and
more accurate as exploration becomes concentrated more and more on potentially valuable schemata. At the
same time, as the evolutionary process proceeds, the average value of the individuals in the populations tends
to increase because the populations tend to have more and more valuable schemata, and since by definition, a
schema’s value is the average value of the individuals containing it, if the population has valuable schemata,
the individuals must, on average, be valuable. Thus the ostensibly good schemata are exploited as the
exploration proceeds. The power of the mechanism comes from the large number of schemata that are
processed simultaneously. The evolutionary mechanism thus provides a powerful efficient way of increasing
the average value of individuals in a population.

Of course schema reproductive rate is not strictly proportional to the current value estimate, because
recombination affects the reproductive rate. By definition, the effect is less the more closely linked the
schema is, and for recombination operators like one or two point crossover, the closely linked schemata are
those with short defining length. The Schema Theorem places a bound on the effect of this crossover, and
quantifies the fact that schema reproductive rate is roughly proportional to the current value estimate for
short schemata, and exactly proportional for single alleles. There are still a very large number of these short
schemata and these are all processed simultaneously and in parallel. This implicit parallelism produces a
population whose short schemata have relatively high value and hence whose individuals must have high
value (since if the individuals had low value, the schema values would be low by definition.)

3 The Story is Wrong
A moment’s reflection tells us that Holland’s story makes no sense. The use of the word “average” in the
definition of schema value obscures the fact that what value we say a schema has depends very much on
what we are taking the average of.

The definition of schema value is supposed to be a generalization of the usual population genetics def-
inition of allele value. But let us look at what population genetics says about allele value. Population
genetics defines the value of an allele to be the weighted average of the values of those genotypes in the
population that contain the allele. This average is computed as follows: We take the set of all individuals
in the population that contain the allele, and we average their values, except that individuals that contain
two copies of the allele are counted twice, those that contain three are counted thrice, etc. Thus the allele
value is a weighted average of genotype values, the weights being the relative frequencies of the genotypes
in the population. So we see immediately that even if the genotype values are independent of the genotype
frequencies (and in many cases they aren’t), the allele values are functions of the genotype frequencies.

The same is true for any sensible definition of schema value. The concept of schema value is a population
concept, and a schema value changes as a population evolves and the weights in the weighted averages
change.

Suppose we follow a particular schema through successive generations in an evolving population. We
obtain a sequence of probably different values of that schema. The numbers in this sequence are the values,
they are not estimates of a value. Holland seems to think that the schema has a single value, an invariant
true value that is being estimated. But there is no such thing. How could there be? It would have to be an
average, but what would the weights be?

Some of the genetic algorithms literature discusses what some call the “static value” of a schema. [9] This
is the value the schema would have in a population in which the frequency of every genotype is the same. So
all genotypes are present, their frequencies are uniform, and all weights are the same. Some of the literature
implies that this static value is the true value of the schema and that the genetic algorithm is estimating
this static value.

Now it is certainly true that in a genetic algorithm one can define such a static value, but it is rarely
a value we are interested in. If we are interested in any one value, it would be a value of the schema in a
population in which most of the other schemata are valuable, are the ones we want. After all, this is the
sort of population we are trying to achieve.

Luckily, the genetic algorithm is quite obviously not trying to estimate the static value. The successive
populations will rarely approach the uniform distribution required to get any estimate of the static value.

The uniform distribution of genotypes assumed in the definition of static value is so artificial that I
am surprised anyone attaches significance to static value. To see how artificial it is, consider the following
genotypes and values:
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genotype value
ADF 5
ADG 1
AEF 1
AEG 1
BDF 0
BDG 0
BEF 0
BEG 0
CDF 0
CDG 4
CEF 4
CEG 4

The static allele values at the first locus are:

allele static-value
A 2
B 0
C 3

But notice that schemata DG, EF, and EG seem to have a similar effect on values. Perhaps it is better
not to distinguish them. We will call them H. We call the DF schema J. The genotypes and values then are
as follows:

genotype value
AJ 5
AH 1
BJ 0
BH 0
CJ 0
CH 4

The static allele values at the first locus then are as follows:

allele static-value
A 3
B 0
C 2

What the static allele values are depends on the representation. The static value is artificial.
The value of a schema or allele is a population concept and does not depend on the representation. For

example, consider the following population of those same genotypes.

genotype frequency value
ADF 1/48 5
ADG 1/16 1
AEF 1/24 1
AEG 1/8 1
BDF 1/24 0
BDG 1/8 0
BEF 1/12 0
BEG 1/4 0
CDF 1/48 0
CDG 1/16 4
CEF 1/24 4
CEG 1/8 4

The allele values at locus 1 are then as follows:
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allele value
A 4/3
B 0
C 11/3

Grouping the schemata as before gives the following population:

genotype frequency value
AJ 1/48 5
AH 11/48 1
BJ 1/24 0
BH 11/24 0
CJ 1/48 0
CH 11/48 4

And the allele values at locus 1 are unchanged.
Fisher has shown us that we have no need of static values. Let us look at his analysis. All the values in

the analysis will depend on the population. So it is a population of genotypes with which we begin.4

4 Asexual Reproduction
All our vectors are row vectors; their transposes are column vectors. The vector e is the vector all of whose
entries are 1. If u is a vector, we write ũ to mean the diagonal matrix whose ii’th entry is ui. We will
sometimes give our numbered equations in two equivalent forms.

Let φ be the probability vector of genotype frequencies. We assume that each φi is positive. µ is a real
valued function from the set of such probability vectors. We call µ(φ) the value of φ. We extend µ to the
set of all positive vectors (the positive orthant) by defining µ(cφ) = cµ(φ), for any positive real scalar c.
We assume µ is differentiable. We define several quantities which depend on φ.

m̄ = µ(φ) (1)

mi =
∂µ(φ)

∂φi
(2)

We call mi the value of genotype i. It is something like the marginal utility of i. The vector m is the
vector whose i’th entry is mi.

Now think of a fixed positive vector ϑ and a scalar variable c. Let φ = cϑ. Then

d

dc
µ(φ) =

∑
i

∂µ(φ)

∂φi

dφi

dc
.

Since φi = cϑi and µ(φ) = cµ(ϑ), this becomes

µ(ϑ) =
∑
i

∂µ(φ)

∂φi
ϑi ,

and multiplying by c gives
µ(φ) =

∑
i

∂µ(φ)

∂φi
φi ,

or
m̄ =

∑
i

φimi m̄ = φm⊤ . (3)

We call m̄ the average value, the average of the genotype values.
We shall be looking at φ’s for which∑

i

φi = 1 φe⊤ = 1 . (4)

4The analysis here is not taken directly from Fisher. It is a modification of some of what is in Kimura. [2]
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These φ’s form a hyperplane in the positive orthant. We call that portion of the hyperplane the population
domain. We define

ai = mi − m̄ a = m− m̄e . (5)

We call ai the excess value of genotype i.
We see that ∑

i

φiai = 0 φa⊤ = 0 . (6)

We define the total variance V as follows.

V =
∑
i

φia
2
i V = aφ̃a⊤ (7)

Suppose φ is changing continuously and differentiably. We let ′ represent the derivative with respect to
time. We see that

(µ(φ))
′
=
∑
i

∂µ(φ)

∂φi
φi

′ . (8)

In other words,
m̄′ =

∑
i

φi
′mi . (9)

Of course from equation (4) we have
∑

i φ
′
i = 0 , and so from this and equations (5) and (9) we have

m̄′ =
∑
i

φ′
iai . (10)

If we suppose si is the number of copies of genotype i in the population, and s̄ =
∑

i si is the total
population size, then

φi =
si
s̄

.

A natural reward scheme is one in which the reproductive rate (birth rate minus death rate) of genotype
i is Kai +χ, where K and χ are the same for all i, but may be functions of φ or of time or of anything else,
and where K is always non-negative. Then, using ′ for time derivative, we have

si
′ = si(Kai + χ) = Ks̄φiai + χsi . (11)

From this and equation (6) we have
s̄ ′ =

∑
i

si
′ = χs̄ , (12)

and so
φi

′ =
si

′s̄− s̄ ′si
s̄2

=
Ks̄φiais̄+ χsis̄− χs̄si

s̄2
= Kφiai .

In other words,
φi

′ = Kφiai φ′ = Kaφ̃ (13)

In fact, we see that if we differentiate si = φis̄ and use equation (13) we obtain

si
′ = si

(
Kai +

s̄ ′

s̄

)
,

so if equation (13) holds, the reward scheme is natural. Thus a reward scheme is natural if and only if
equation (13) holds.

Substituting equation (13) into equation (10) gives

m̄′ = K
∑
i

φia
2
i . (14)

This shows us that m̄′ is non-negative. This equation can be written

m̄′ = KV . (15)

This last equation is Fisher’s Theorem for the case of no recombination.
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Natural reward schemes are common in the literature. In many such schemes, K is constant and
χ = Kµ(φ) = Km̄. So in these schemes, the population size is changing at rate s̄ ′ = Km̄s̄, and the
reproductive rate of genotype i is Kmi. Here K is a constant of proportionality and we have what we can
call value proportional reproductive rate.5

If we have value proportional reproductive rate, if the reproductive rate of genotype i is Kmi, for all i
(K a constant), then the average reproductive rate is Km̄. We can ask how the average reproductive rate
changes over time, and we see that its rate of change is Km̄′. By equation (15), this is K2V , a non-negative
number. If reproductive rate is what we are measuring, if value mi is reproductive rate of genotype i, then
K = 1, and V is the variance of reproductive rate, and average reproductive rate is increasing at rate V . Of
course the population size is continually changing. This situation appears in the biological literature.

On the other hand, if we set χ = 0 then the population size is constant, as we can see by equation (12).
One common way of doing this in a genetic algorithm is for genotype i to have birth rate Kmi, and for the
population size to be held constant by artificially eliminating (killing) individuals without regard to their
genotype. Since each individual is equally likely to be killed, the death rate from this of all genotypes is the
same. Let’s call it ν. (Of course ν may be changing with time.) So the reproductive rate of i is Kmi−ν, and
si

′ = si(Kmi − ν) = s̄φi(Kai +Km̄− ν) = Ks̄φiai + s̄φi(Km̄− ν). If we sum this equation over all i and
use equations (6) and (4), we obtain s̄ ′ =

∑
i si

′ = s̄(Km̄ − ν). Since our killing is keeping the population
size constant, s̄ ′ = 0, so ν = Km̄, and the reproductive rate is Kmi − ν = Kai. In other words, χ = 0.

The derivation of equation (15) was independent of χ, so equation (15) holds happily with χ = 0. In
this case, mi is of course the value of i, but it cannot be the reproductive rate of i (unless m̄ = 0), since
the reproductive rate is Kai. Equation (15) says how the average value m̄ is changing, but not how average
reproductive rate is changing. Average reproductive rate isn’t changing, it’s zero. The population size is
constant.

5 Steepest Ascent
Remember that we are calling the set of probability vectors (the set of stochastic vector values that φ can
take) the population domain. So v is in the population domain if and only if v e⊤ = 1 and every vi is
positive. We are thinking of φ as traveling differentiably over the population domain, and thinking of µ as a
function from the population domain (even though it’s actually from the whole positive orthant). We want
φ to climb uphill on the function µ. Note that m̄′ is the rate of climb. We see from equation (15) that if we
use a natural reward scheme then φ never goes downhill (since V ≥ 0), and it climbs uphill unless V = 0.

Note that the following four statements are equivalent: (1) V = 0 ; (2) every ai is zero; (3) the mi’s are
all the same; (4) the ai’s are all the same. If these statements hold, I shall say the ground is level. Note that
the ground is level at a local maximum of µ. (Local maximum of µ restricted to the population domain.)

Although natural reward schemes send φ uphill, they do not in general send it by the path of steepest
ascent. But by transforming axes, we can make the natural reward schemes into steepest ascent schemes.

Define ψi =
√
φi, so φi = ψ2

i . As φ travels over the population domain in our original vector space, its
image ψ travels over the transformed space, which I shall call the square root space. The population domain
in the original space corresponds to a portion of the unit sphere in the square root space, and ψ travels over
that portion.

Corresponding to the value function µ over the positive orthant of the original space, we define the value
function f over the positive orthant of the square root space by f(ψ) = µ(φ) = m̄. For each genotype i, we
define the function fi by

fi(ψ) =
∂f(ψ)

∂ψi
.

We want ψ to move uphill on the f function in the square root space.
Suppose ψ is at some point on the unit sphere in the square root space, and that ψ is in the positive

orthant. We want ψ′ to aim in the steepest ascent direction. We assume the ground is not level, that is, we
assume V ̸= 0 . To find the steepest ascent direction, we need to find the unit vector x that maximizes
f(ψ) +

∑
i fi(ψ)xi, subject to the constraints ∥x∥ = 1, and x must be a vector tangent to the unit sphere

at point ψ. That is, ψ · x = 0. We use Lagrange multipliers. We define

F (x) = f(ψ) +
∑
i

fi(ψ)xi +A
∑
i

x2i +B
∑
i

ψixi .

5Holland calls this “fitness proportional selection”.
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Now
fi(ψ) =

∂f(ψ)

∂ψi
=
∂µ(φ)

∂φi

dφi

dψi
= mi2ψi .

Let
Fi(x) =

∂F (x)

∂xi
,

so
Fi(x) = 2miψi +A2xi +Bψi .

If this is zero for all i then x will point either in the steepest ascent or steepest descent direction, so we set
Fi(x) to zero and obtain

2miψi +A2xi +Bψi = 0 (16)

Multiplying by ψi gives 2miφi +A2ψixi +Bψ2
i = 0.

Summing over i then gives 2m̄+A2(ψ · x) +B∥ψ∥2 = 0, which is simply 2m̄+B = 0. Therefore,
B = −2m̄. Substituting this back into equation (16) gives 2miψi + A2xi − 2m̄ψi = 0. Dividing by 2 gives
miψi +Axi − m̄ψi = 0, which is Axi + aiψi = 0. Thus we obtain

Axi = −ψiai . (17)

Squaring this gives A2x2i = φia
2
i , and then summing over i gives A2∥x∥2 = V , so we see that A2 = V ,

and A is either
√
V or −

√
V . Equation (17) gives us xi = − 1

Aψiai. The x so defined points in either the
steepest ascent or steepest descent direction, so we want ψ′ to equal this x. That is, ψi

′ = − 1
Aψiai, and so

φi
′ = 2ψiψi

′ = − 2
Aφiai. Then using equation (10) gives m̄′ =

∑
i φi

′ai = − 2
A

∑
i φia

2
i = − 2

AV . We said
that A is either

√
V or −

√
V , and we can now see that −

√
V gives steepest ascent and

√
V gives steepest

descent. Thus for steepest ascent, we need to have φi
′ = 2√

V
φiai. Any positive multiple of these values

will do, so we see that we get steepest ascent if and only if we have φi
′ = Kφiai (equation (13)), for some

positive number K. This is the natural reward scheme.
That argument using Lagrange multipliers is the usual approach to these matters, as I shall discuss in

section 19, but I must admit that the conclusion of the above argument feels counterintuitive to me. We are
saying that as long as the ground is not level, as long as the ai’s are not all the same, then there is exactly
one steepest ascent direction. But what if for example there are four genotypes, the value function µ is given
by µ(φ) = φ1 + φ2 − φ3 − φ4 , and φ = ⟨ 14 ,

1
4 ,

1
4 ,

1
4 ⟩ . Then a = ⟨1, 1,−1,−1⟩ . How could it possibly

make any difference to the rate of climb in the square root space if we raise the rate of increase of φ1 and
compensate by lowering the rate of increase of φ2 by the same amount? After all, the two genotypes are
worth exactly the same. (a1 = a2 = 1) True, but it turns out that that sort of compensation is inappropriate
for finding steepest ascent in the square root space. I found it all a bit confusing. Lagrange multipliers seem
too much like hocus pocus to me and I don’t really trust my ability to use them properly.

Luckily, I’ve found another more geometric proof of the above result that makes it clear there really is
just one steepest ascent direction. Since I will want to use this result later, I now give the more geometric
proof.

Define the vector ψ as above, and define the vector v = 2aψ̃ . We assume the ground is not level, so
v is not the zero vector. Then vi = 2ψiai and v2i = 4φia

2
i . Summing over i gives ∥v∥2 = 4V , so

∥v∥ = 2
√
V . Note that v ·ψ =

∑
i 2ψiaiψi = 2

∑
i φiai = 0 .

As before, we look for a unit vector x that points in the steepest ascent direction at point ψ, which is a
point on the unit sphere. But as before, x must point tangent to the unit sphere at point ψ, that is, x must
be orthogonal to the vector ψ. So we want x to point in the steepest ascent direction at point ψ subject to
the constraint that x must be orthogonal to ψ.

Now suppose we point x in some direction. What is the rate of ascent in that direction? It is what
the rate of climb m̄′ would be if we set ψ′ equal to x. Now notice that if we set ψ′ equal to x, then by
φ′
i = 2ψiψ

′
i and equation (10) we have x · v = ψ′ · v =

∑
i ψ

′
i2ψiai =

∑
i φ

′
iai = m̄′ . So x · v is the

rate of climb in direction x.
So in which direction should we point x ? Remembering that we must keep the unit vector x orthogonal

to ψ, we want to point it so as to maximize x · v . So we want to point it so as to minimize the angle
between x and v. How small can we make that angle and still have x orthogonal to ψ ?

It’s easy. We already noted that v · ψ = 0 , so v is itself orthogonal to ψ. We can get the angle
down to zero degrees by simply pointing x in the same direction as v. And we see easily that this gives the
direction of steepest ascent and that this is unique. There is exactly one direction of steepest ascent unless
the ground is level. Any other direction gives a lower rate of ascent.

9



To tidy up, let’s point the unit vector x in the same direction as v and look at the reward scheme we
get. In that case, x = 1

∥v∥v . We set ψ′ = x and so we have ψ′
i = xi =

1
∥v∥vi =

1
2
√
V
2ψiai =

1√
V
ψiai .

Then φ′
i = 2ψiψ

′
i =

2√
V
φiai , which is exactly the result we got using Lagrange multipliers.

In the square root space, as long as the ground is not level there is one unique steepest ascent direction.
We follow that steepest ascent direction if and only if we use a natural reward scheme.

6 Epistasis
We let N be the ploidy, and L be the number of loci. Associated with each locus is its locus set, the indices
of those alleles that can be found at that locus. (We will use the letter L to refer to a locus set.) The locus
sets are disjoint.

For example, suppose N = 3 (triploid) and L = 4, and suppose the four locus sets are
{1, 2, 3}, {4, 5}, {6, 7}, {8, 9}.
Let’s look at one of these triploid genotypes:

1 3 3
4 4 5
7 7 7
8 9 8

We can think of the genotype as consisting of 3 chromosomes. The chromosomes are ordered, so the genotype

3 1 3
4 4 5
7 7 7
9 8 8

is a different genotype. Of course in many applications these two genotypes will have the same value.6 In
humans, N = 2, and so each genotype has two chromosomes, except that each of these chromosomes is
chopped up into 23 separate segments (called chromosomes). Such chopping will be irrelevant in this essay
since we will not be discussing linkage details.

We let cij be the number of occurrences of allele j in genotype i. The matrix C is the matrix whose ij’th
entry is cij .

The probability of allele j in the population is pj . That is,

pj =
1

N

∑
i

φicij p = 1
N
φC . (18)

The vector e has the same dimensionality as φ. The “shorter” vector of all ones, which has the same
dimensionality as p, we write as ě.

For any genotype i and any locus set L, we have∑
j∈L

cij = N . (19)

Now ∑
j∈L

1

N

∑
i

φicij =
1

N

∑
i

φi

∑
j∈L

cij ,

so ∑
j∈L

pj = 1 . (20)

Since there are L loci, ∑
j

pj = L . (21)

We let φ̄i be the probability that genotype i would have if we did complete recombination. That is,
6Suppose N = 6 and L = 1, and the locus set is {1, 2, 3}. Then 132133 and 331231 are distinct genotypes. They might have

different values. The system might have an architecture that learns which the better orderings are, or it might not. See [23]
and [20] for a discussion of why we call this situation “payoff only” and how to use this as a basis for studying adaptive rule
based systems.
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φ̄i =
∏
j

p
cij
j . (22)

The population φ is said to be at linkage equilibrium, or at Hardy-Weinberg equilibrium, if φ̄ = φ.
We define the excess value of allele j as

αj =
1

Npj

∑
i

φicijai α = 1
N
a φ̃C p̃−1 . (23)

In other words, the excess value αj of allele j is the weighted average of the excess values of the genotypes
in which j occurs, counting a genotype twice if j occurs in it twice, thrice if j occurs in it thrice, etc.

Note that ∑
j∈L

pj
1

Npj

∑
i

φicijai =
∑
i

φiai
1

N

∑
j∈L

cij =
∑
i

φiai = 0 .

Then from this and equation (23), we obtain the following two equations.∑
j∈L

pjαj = 0 (24)

∑
j

pjαj = 0 pα⊤ = 0 (25)

We now define the excess genic value âi of genotype i.

âi =
∑
j

cijαj â = αC⊤ (26)

From equations (26), (18), and (25), we have φ â⊤ = φCα⊤ = Npα⊤ = 0, so

φ â⊤ = 0
∑
i

φiâi = 0 . (27)

The quantity ai − âi is called the epistatic (and dominance) value of the genotype i. Note that the value
of a genotype is the average population value, plus the excess genic value, plus the epistatic value. That is,
mi = m̄+ âi + (ai − âi).

We now define the genic variance Vg and the epistatic variance Ve.

Vg =
∑
i

φiâ
2
i Vg = â φ̃ â⊤ (28)

Ve =
∑
i

φi(ai − âi)
2

Ve = (a− â) φ̃ (a− â)⊤ (29)

7 An Example
Here is an example: N = 1 and L = 2. There are 4 alleles, which we shall call A, B, C, and D. Locus 1 is
either A or B, and locus 2 is either C or D. So the genotypes are AC, AD, BC, and BD, which we number
in that order. Their frequencies are 1

2 , 0, 0,
1
2 , respectively, and their values are 6, 100, 3, 0, respectively. So

for example, genotype 2 is AD, φ2 = 0, and m2 = 100. Thus m̄ = 3 and we have the following quantities.

i genotype φi mi ai âi ai − âi φ̄i

1 AC 1
2 6 3 6 -3 1

4
2 AD 0 100 97 0 97 1

4
3 BC 0 3 0 0 0 1

4
4 BD 1

2 0 -3 -6 3 1
4

j allele pj αj

1 A 1
2 3

2 B 1
2 -3

3 C 1
2 3

4 D 1
2 -3

11



â ˜̄φâ⊤ = 18
âφ̃a⊤ = 18
Vg = âφ̃â⊤ = 36
V = aφ̃a⊤ = 9
Ve = (a− â)φ̃(a− â)⊤ = 9
Nαp̃α⊤ = 18
âφ̃(a− â)⊤ = −18

8 Some Useful Equations
Consider the following useful equation.

∏
L

∑
j∈L

zj

N

=
∑
i

∏
j

z
cij
j (30)

where L ranges over locus sets and the zj ’s are any numbers.
It is really no more than the distributive law. If it’s not obvious, consider a haploid example. (So in the

example, N = 1 , and each cij is either 1 or 0.) Look at the twelve genotypes in the first chart in section
3 and ignore the values listed there. Pretend A, B, C, D, E, F , and G are numbers, the zj ’s. Now each of
the genotypes looks like a product, and if we sum the products we are doing what the right side of equation
(30) tells us to do. On the other hand, that sum is clearly (A+B +C)(D+E)(F +G) , which is the left
side of equation (30).

Now if we set zj = pj in equation (30) and use equation (20), we have

1 =
∑
i

∏
j

p
cij
j ,

which by equation (22) is ∑
i

φ̄i = 1 . (31)

We use a similar trick in lemmas 1 and 3 below.

Lemma 1 Np = φ̄C

Proof: We start with equation (30):

∏
L

(∑
k∈L

zk

)N

=
∑
i

∏
k

zcikk . (32)

Select any allele j and let L̂ be the locus set of which j is a member. We set zk = xδjkpk, where x is a
variable and δjk is the Kronecker delta. Then zk − pk = (xδjk − 1)pk and
(
∑

k∈L̂ zk)− (
∑

k∈L̂ pk) =
∑

k∈L̂(zk − pk) = (x− 1)pj . Then by equation (20), this becomes∑
k∈L̂ zk = xpj − pj + 1. Equation (20) also tells us that if L ̸= L̂, then

∑
k∈L zk =

∑
k∈L pk = 1. These

last two equations give this: ∏
L

(∑
k∈L

zk

)N

= (xpj − pj + 1)
N (33)

Now j = k ⇒ xδjkcik = xcij , whereas j ̸= k ⇒ xδjkcik = 1. Therefore
∏

k x
δjkcik = xcij . If we use this and

equation (22), we obtain
∏

k z
cik
k = (

∏
k x

δjkcik)(
∏

k p
cik
k ) = xcij φ̄i.

If we use this and equation (33), then equation (32) becomes (xpj − pj + 1)
N

=
∑

i φ̄ix
cij .

Taking derivative with respect to x gives N(xpj − pj + 1)
N−1

pj =
∑

i φ̄icijx
cij−1, and setting x = 1 turns

this into Npj =
∑

i φ̄icij . 2

From lemma 1 and equation (18), we have

φ̄C = φC . (34)
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Lemma 2 ¯̄φ = φ̄

Proof: define ϑ = φ̄ and forget for the moment how ϑ was defined and think of it just as a distribution
vector over genotypes. We ask what ϑ̄ is.

Well, ϑ induces a distribution vector q over alleles, and q determines ϑ̄. The equations are analogous to
equations (18) and (22), namely

q =
1

N
ϑC (35)

and
ϑ̄i =

∏
j

q
cij
j . (36)

We now remember that ϑ = φ̄, so equation (35) becomes q = 1
N φ̄C, which by equation (34) becomes

q = 1
NφC. Comparing this with equation (18) tells us that q = p, so equation (36) becomes ϑ̄i =

∏
j p

cij
j .

This and equation (22) gives ϑ̄i = φ̄i. Thus ϑ̄ = φ̄. But we also have ϑ̄ = ¯̄φ (since ϑ = φ̄). 2

Lemma 3 If β is a real vector of the same dimensionality as p, and if
∑

j∈L pjβj = 0 for all locus sets L,
then

β = 1
N
βC⊤ ˜̄φC p̃−1 .

Proof: First we define b̂ = βC⊤, so we have b̂i =
∑

j cijβj for all i. We now take equation (30).

∏
L

(∑
k∈L

zk

)N

=
∑
i

∏
k

zcikk

We substitute ykxβk for zk, where the yk’s and the x are independent real variables. We obtain

∏
L

(∑
k∈L

ykx
βk

)N

=
∑
i

∏
k

ycikk xcikβk

=
∑
i

(∏
k

ycikk

)(∏
k

xcikβk

)

=
∑
i

(∏
k

ycikk

)
x
∑

k
cikβk

=
∑
i

(∏
k

ycikk

)
xb̂i .

We can write this as

exp

(∑
L
N log

(∑
k∈L

ykx
βk

))
=
∑
i

(∏
k

ycikk

)
xb̂i .

Taking derivative with respect to x gives

exp

(∑
L
N log

(∑
k∈L

ykx
βk

))∑
L
N

∑
k∈L ykβkx

βk−1∑
k∈L ykx

βk
=
∑
i

(∏
k

ycikk

)
b̂ix

b̂i−1 .

Setting x = 1 gives

exp

(∑
L
N log

(∑
k∈L

yk

))
N
∑
L

∑
k∈L ykβk∑
k∈L yk

=
∑
i

(∏
k

ycikk

)
b̂i . (37)

In the proof of this lemma only, let ′ mean derivative with respect to yj . Let L̂ be the locus set of which j

is a member. Then using exp(
∑

LN log(
∑

k∈L yk)) =
∏

L (
∑

k∈L yk)
N gives the following two equations.(

exp

(∑
L
N log

(∑
k∈L

yk

)))′

=

(
exp

(∑
L
N log

(∑
k∈L

yk

)))N log

∑
k∈L̂

yk

′

=

∏
L

(∑
k∈L

yk

)N
( N∑

k∈L̂ yk

)
(38)
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(
N
∑
L

∑
k∈L ykβk∑
k∈L yk

)′

= N

(∑
k∈L̂ ykβk∑
k∈L̂ yk

)′

= N
βj
∑

k∈L̂ yk −
∑

k∈L̂ ykβk(∑
k∈L̂ yk

)2 (39)

Taking derivatives of both sides of equation (37) with respect to yj and using the product rule and equations
(38) and (39) and exp(

∑
LN log(

∑
k∈L yk)) =

∏
L (
∑

k∈L yk)
N gives

∏
L

(∑
k∈L

yk

)N
( N∑

k∈L̂ yk

)
N
∑
L

∑
k∈L ykβk∑
k∈L yk

+

∏
L

(∑
k∈L

yk

)N
N

βj
∑

k∈L̂ yk −
∑

k∈L̂ ykβk(∑
k∈L̂ yk

)2
=
∑
i

∏
k ̸=j

ycikk

 cijy
cij−1
j b̂i =

1

yj

∑
i

(∏
k

ycikk

)
cij b̂i .

Now let yk = pk and use
∑

j∈L pjβj = 0 and equations (20) and (22), and we get

Nβj =
1

pj

∑
i

φ̄icij b̂i βj =
1

Npj

∑
i

φ̄icij b̂i β = 1
N
b̂ ˜̄φC p̃−1 . 2

If we substitute α for β in lemma 3, then equation (24) allows us to use the lemma to obtain

α = 1
N
αC⊤ ˜̄φC p̃−1 . (40)

Then using equation (26) gives

αj =
1

Npj

∑
i

φ̄icij âi α = 1
N
â ˜̄φC p̃−1 . (41)

Compare this with equation (23).

9 Variances with Complete Recombination
By equations (23) and (41), we have

a φ̃C = Nα p̃ = â ˜̄φC . (42)

Multiplying on the right by α⊤ gives a φ̃C α⊤ = â ˜̄φC α⊤, which by equation (26) is a φ̃ â⊤ = â ˜̄φ â⊤. Its
transpose is â φ̃a⊤ = â ˜̄φ â⊤. So

â ˜̄φâ⊤ = aφ̃â⊤ = âφ̃a⊤ . (43)

If φ is at linkage equilibrium, we have φ̄ = φ and so

Vg = â φ̃ â⊤ = a φ̃ â⊤ = â φ̃a⊤ , (44)

(at linkage equilibrium) so

Ve = (a− â) φ̃ (a− â)
⊤
= a φ̃a⊤ − a φ̃ â⊤ − â φ̃a⊤ + â φ̃ â⊤ = V − Vg − Vg + Vg = V − Vg .

Thus
V = Vg + Ve (45)

at linkage equilibrium. We note from equations (26) and (42) that â ˜̄φ â⊤ = â ˜̄φC α⊤ = Nα p̃α⊤. Thus

Vg = Nα p̃α⊤ = N
∑
j

pjα
2
j (46)

if we are at linkage equilibrium.
Notice that equations (44), (45), and (46) are true at linkage equilibrium, but are not true in general, as

the example in section 7 shows.
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10 Approximating Genotype Values
We can show a sense in which the genic values are the least mean square approximation to the values. We
shall do the one locus case.

In this section, we assume one locus (L = 1) and linkage equilibrium (φ̄ = φ). We define

T = 1
N
C⊤ ˜̄φC p̃−1 = 1

N
C⊤φ̃C p̃−1 .

Lemma 4 If L = 1 and φ̄ = φ, then ěT = N ě.

Proof: ěC⊤ = Ne, so using this and equation (18), we have ěT = φC p̃−1 = N p p̃−1 = N ě. 2

Lemma 5 If L = 1 and φ̄ = φ, then T is nonsingular.

Proof: Take any “short” real vector u of the same dimensionality as p. We will show that u is in the range
of the transformation T . Define ū = pu⊤ and β = u− ūě. Now since there is only one locus set,∑

j∈L pjβj =
∑

j pjβj = pβ⊤ = 0, and so by lemma 3, we have β T = β. Using this and lemma 4 gives us
(β + ū

N ě)T = βT + ū
N ěT = β + ū ě = u. 2

Now let x be a vector of proposed excess allele values and y = xC⊤. Then we have yi =
∑

j cijxj . The
vector y will be the vector of genic values.

We want to minimise Q =
∑

i φi(yi − ai)
2. Now we have ∂Q

∂xj
=
∑

i φi2(yi − ai)cij for all j. We want
these partial derivatives to be zero. That is, for all j, we want

∑
i φi(yi−ai)cij = 0. That is, (y−a) φ̃C = 0.

This means y φ̃C = a φ̃C. By the definition of y and equation (42), this becomes xC⊤φ̃C = Nα p̃. In
other words, xC⊤φ̃Cp̃−1 = Nα. So xT = α. But by equation (40), we have αT = α, so (x−α)T = 0.
By lemma 5, T is nonsingular, so x = α. Consequently, by equation (26) we have y = αC⊤ = â.

11 Fisher’s Theorem for Complete Recombination
We now let φ vary, using ′ to represent time derivatives. From equation (18) we have

pj
′ =

1

N

∑
i

φi
′cij p′ = 1

N
φ′C . (47)

For example, suppose we have a natural reward scheme, so equation (13) holds. From equations (47),
(13), and (42), we have p′ = 1

Nφ
′C = 1

NKaφ̃C = 1
NKNαp̃. In other words,

p′ = Kαp̃ pj
′ = Kpjαj (48)

if we have a natural reward scheme.
Now whatever our reward scheme we have the following.

From equation (22) we have log(φ̄i) =
∑

j cij log(pj), so

φ̄′
i

φ̄i
=
∑
j

cij
pj

′

pj
,

which gives
φ̄′
i = φ̄i

∑
j

cij
pj

′

pj
φ̄′ = p′p̃−1C⊤ ˜̄φ . (49)

From equation (31), we have ∑
i

φ̄′
i = 0 . (50)

We define the quantity
ṁ = µ(φ̄) .

By analogy with equation (8), the chain rule gives us

ṁ′ = (µ(φ̄))
′
=
∑
i

∂µ(φ̄)

∂φ̄i
φ̄′
i . (51)
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Now ∂µ(φ̄)
∂φ̄i

is the partial derivative of µ in the i direction at the point φ̄. By contrast, ∂µ(φ)
∂φi

is the partial
derivative of µ in the i direction at the point φ. If the points φ̄ and φ happen to be the same, then ṁ = m̄,
and ∂µ(φ̄)

∂φ̄i
=

∂µ(φ)
∂φi

= mi, for all i.
Now let us assume linkage equilibrium.

That is, let us assume that at the current moment we have φ̄ = φ. The change in φ causes a change in p
and hence in φ̄, but of course φ̄′ may be quite different from φ′. From what we said in the last paragraph,
we see that our φ̄ = φ assumption means that equation (51) can be written

ṁ′ =
∑
i

φ̄′
imi . (52)

By equations (5) and (50),
∑

i φ̄
′
imi =

∑
i φ̄

′
i(m̄ + ai) = m̄

∑
i φ̄

′
i +

∑
i φ̄

′
iai =

∑
i φ̄

′
iai. By this and

equation (52) we have
ṁ′ =

∑
i

φ̄′
iai = a φ̄′⊤ . (53)

If φ′ is the change specified by the reward scheme, then φ̄′ and ṁ′ are the changes that actually occur
if we have complete recombination.

From equations (49) and (47) we have φ̄′ = 1
Nφ

′Cp̃−1C⊤ ˜̄φ , so φ̄′ is a linear function of φ′. Similarly,
from equations (26) and (23) we have â = 1

N aφ̃Cp̃−1C⊤ , so â is a linear function of a. So we have
a φ̄′⊤ = 1

N a˜̄φCp̃−1C⊤φ′⊤ , and we have âφ′⊤ = 1
N aφ̃Cp̃−1C⊤φ′⊤ , and from equations (23) and (47)

we have Nαp′⊤ = 1
N aφ̃Cp̃−1C⊤φ′⊤ . So from these last three equations we see that if φ̄ = φ then

a φ̄′⊤ = âφ′⊤ = Nαp′⊤ .
From this and equation (53) we have

ṁ′ = a φ̄′⊤ = âφ′⊤ = Nαp′⊤ (54)

if we have linkage equilibrium.
So suppose we have a natural reward scheme, as given by equation (13). Then from that and equations

(54) and (44) , we have ṁ′ = âφ′⊤ = Kâ φ̃a⊤ = KVg. That is,

ṁ′ = KVg (55)

if we have a natural reward scheme and linkage equilibrium.
This is Fisher’s Theorem for the case of complete recombination. Compare with equation (15).

Before leaving these matters, it is worth noting that if we have a natural reward scheme and linkage
equilibrium, then from equations (49), (48), (26), and φ̄ = φ, we have
φ̄′ = p′ p̃−1 C⊤ ˜̄φ = Kα p̃ p̃−1 C⊤ ˜̄φ = KαC⊤ ˜̄φ = Kâ ˜̄φ = Kâ φ̃. In other words,

φ̄′ = Kâ φ̃ φ̄′
i = Kφiâi (56)

if we have a natural reward scheme and linkage equilibrium.
Compare this with equation (13).

Note that if we have a natural reward scheme, linkage equilibrium, and no epistasis (zero epistatic values),
then â = a and by equations (13) and (56) we have φ̄′ = φ′ .

12 Fisher’s Wording
Fisher’s statement of his theorem (see section 1) is ambiguous as to what sort of recombination he assumes
and as to whether he assumes linkage equilibrium. If we look at his proof, we see that in places he assumes
linkage equilibrium and in places he doesn’t. For example, he is very careful to make a distinction between
what he calls average excess and what he calls average effect.7

Suppose we look at the example in section 7. The average excess of allele A (over allele B) is α1 − α2,
which is 6. The average effect of allele A is the average of the change in value if you start with an individual
that has a B at locus 1 and replace the B with an A. So in the example, since every individual that has a
B is of genotype BD, the average effect of A is 100.

7Crow and Kimura [2, page 210] say “Fisher’s [4, 6] treatment of the subject is recondite. A clearer discussion of the circum-
stances under which the principle [Fisher’s theorem] works was given in Fisher [5]. For a straightforward general derivation, see
Kimura [15].” In Kimura [15], he evidently determines average effect by least mean square approximation. I haven’t read [15].
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Now it is clear that at linkage equilibrium, an allele’s average effect is the same as its average excess, so
clearly Fisher is not assuming linkage equilibrium, and his wording of the theorem does not imply equilibrium.

But then, Fisher’s proof seems to contain errors. On [6, page 32], he defines random variables x and X.
The variable x seems to be what we have called mi and the variable X seems to be what we have called
m̄ + âi. He then says, “It follows that the sum for the whole population of the product X(x −X) derived
for each individual must be zero, ....” He seems to be claiming that the quantity (m̄e+ â)φ̃(m− (m̄e+ â))⊤

is zero. If we use eφ̃ = φ and m− m̄e = a, the quantity becomes m̄φ(a− â)⊤+ âφ̃(a− â)⊤. By equations
(6) and (27), the quantity is simply âφ̃(a − â)⊤. He is claiming this must be zero. But in our example in
section 7 it is −18.

Of course the quantity is zero at linkage equilibrium, as equation (44) shows.
On [6, page 34], Fisher says “The genetic variance as here defined is only a portion of the variance

determined genotypically, and this will differ from, and usually be somewhat less than, the total variance to
be observed.” The wording is typically confusing, but if it means that genic variance is never greater than
total variance (Vg ≤ V ), as it seems to, then it is wrong. It is true at linkage equilibrium, as equation (45)
shows, but it is not true in the example in section 7.

Of course by “genetic variance” he might have meant something other than the variance of the excess
genic values âi. These values were sums of allele excess values (see equation (26)). Perhaps he meant us
to use sums of allele average effects. We can see that the average effects of alleles A, B, C, and D in the
example are 100, -3, 3, 94, respectively. The analogue of â1, â2, â3, â4, using average effects, is 103, 194, 0,
91, respectively. The variance of these, remembering that half of the population is genotype 1 and half is
genotype 4, is 9445. No, surely he didn’t mean that variance.

Later, on page 34, Fisher re-defines x and X, and proceeds as if he is not assuming linkage equilibrium.
But then on page 36 he says, “It follows that the variance of the genetic value ξ is equal to the covariance
of genetic and genotypic values ξ and x.” Again, it looks like an assertion of equation (44), which we have
seen fails unless we have linkage equilibrium. Unless of course he wants us to use the average excesses, in
which case his variance is 9445, as we have seen, and his covariance is 1

2 (3)(103) +
1
2 (−3)(91), which is 18.

No, he couldn’t mean that.
Either Fisher’s reasoning or his exposition is faulty.

13 Problems with Fisher’s Approach
Having said this, we need to admit some of the problems with Fisher’s approach. The most glaring problem
is that Fisher’s theorem requires a natural reward scheme, and implementing such a scheme requires a way
of estimating the mi’s. This may not be as easy as it seems. A cannibal genotype may have very low mi,
but its reproduction rate will be proportional to the resources it acquires, and this may be very high. The
correct mi is something like the marginal utility of genotype i. Correct estimating procedures may require
either group selection [24] or something analogous to capitalist pricing theory. Holland has employed the
capitalist approach in developing his bucket brigade [13] for classifier systems. Whatever the approach,
it relies ultimately on something associated with genotype i that is not affected too much by the other
genotypes. Some restriction on genotype interaction is required.

There is a second problem with Fisher’s approach. This stems from the finiteness of our populations.
Even if we do have a way of estimating the mi’s, Fisher’s theorem requires that reproductive rate be exactly
proportional to the mi’s (or more generally, be exactly Kai+χ ). In practice, this requires a huge population,
for otherwise the reproductive rate will be subject to sampling error noise. To see how large a population
might be required, we need only reflect that the analysis assumes each φi is positive. Thus the population
should have at minimum as many individuals as there are possible genotypes. This is ridiculous. No feasible
population is anywhere near that large.

But if we look at Fisher’s theorem for complete recombination, and restrict ourselves to populations at
linkage equilibrium, we can view all quantities as functions of the pj ’s, and we see that what we need is to
have every pj positive. Now a population that contains every possible allele has every pj positive, and this
is achieved in most modest size populations. The problem is that even with a high recombination rate, such
populations do not achieve exact linkage equilibrium. If they did, every φi would be positive, since every φ̄i

is assuredly positive if the population contains every allele.
So we see that in any real population, sampling error noise makes both the reproductive rates and the

population structure different from what the analysis requires.
So the population does not evolve deterministically as predicted by Fisher’s theorem. The noise introduces

a randomness, and the population φ travels through the positive orthant not along a deterministic smooth
track, but in tiny probabilistic jumps that occur when individuals are born or die. In modeling populations,
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we assume (as do evolutionary biologists and ecologists) that the actual track of φ is near the deterministic
track, in this case the track that Fisher predicts, and that the larger the population (the larger the sample
size) the less the noise and the closer the population will follow Fisher’s track. For many years there was
no proof in the literature of the convergence to the deterministic track as the population size increased,
(neither for this case nor for the analogous ecological models). Biologists simply assumed the convergence.
Trevor Fenner and I have sketched a convergence proof that we are convinced will work when it is tidied up.
Probably there are now convergence proofs in the literature.

In any case, Fisher gives us an expected direction for the movement of φ, and deviations from that
direction are due to unbiased noise.

Of course this argument is assuming complete recombination, or at least very high recombination rate,
and that is not the situation we are interested in. Nevertheless, if we look at short schemata rather than
alleles, and view all quantities as functions of the probabilities of the short schemata, then we can have
a recombination rate just high enough that the short schemata are linked only loosely to each other, yet
low enough that the short schemata are comparatively undisrupted. Of course this is the situation we are
interested in. The short schemata overlap, and the situation is messy, but the hope is that an approximate
analogue of Fisher’s theorem for complete recombination will hold, but with short schemata in place of
alleles.

The third problem with Fisher’s approach has to do with the amount of epistasis. Just as we need
a bound on genotype interaction, so too do we need a bound on interaction between alleles in the same
individual. Suppose we have a conceptual catalog that lists all the possible genotypes and suppose to each
genotype we assign a random integer number between 0 and 100000, each integer being equally likely to be
chosen. Suppose we enter these numbers in the catalog. For each genotype i, the number νi will be the
number entered for i in the catalog. We let µ(φ) =

∑
i φiνi. Then whatever the population, for each i

we have mi = νi, the number in the catalog. Fisher’s theorem says that with complete recombination, m̄
increases at a rate proportional to Vg. So presumably a genetic algorithm will work on a population of these
genotypes, in the sense that m̄ will increase.

But of course the genetic algorithm will actually fail. The increase in m̄ will be microscopic. The difference
in genotype values is almost entirely due to epistasis. In a linkage equilibrium population, Vg is tiny and Ve
is almost equal to V . The alleles’ values are almost identical and selection for better alleles accomplishes
virtually nothing. Similarly selection for better short schemata by a genetic algorithm accomplishes virtually
nothing, so genetic algorithm linkage doesn’t help.

So we see that some restriction on the amount of epistasis is required for evolution to work. Strong
interaction between the effects of genes closely linked is okay, but if there is too much interaction between
weakly linked genes, a genetic algorithm cannot work. It may be that a Walsh Transform analysis can
separate the nearby interactions from the more distant interactions, but I have not investigated this. The
hope would be that such an analysis could extend Fisher’s theorem to systems with a linkage pattern like
that produced by crossover. But even without such an extension, the conjecture that m̄ increases at a rate
proportional to some number between Vg and V seems reasonable. The problem here is that with high
epistasis and low Vg, that number could be tiny.

But provided we assume some restrictions on interaction between genotypes in a population and on inter-
action between alleles in an individual, Fisher’s analysis makes sense, and evolution and genetic algorithms
presumably work.

14 The Proportionality Question
In practice, genotype values mi are expressions of payoff received from the environment. In Genetic Algo-
rithms, reproductive rates are set on the basis of this payoff. But there are many ways of doing this. A
natural reward scheme is only one way. Which ways are good and which bad? Let’s state the question as
follows.

For each i, let ri be the excess reproductive rate of genotype i. That is, ri is the reproductive rate of
genotype i minus the weighted average of the reproductive rates of all the genotypes (weighted by proportions
φ). Of course we have

∑
i φiri = 0 . If for the moment we let R̄ be the average reproductive rate, then

for asexual reproduction we have s′i = si(R̄+ ri) . Therefore s̄′ = s̄R̄ , and since φi =
si
s̄ , the quotient

rule tells us that φ′
i = φiri . We see that excess reproductive rate ri is φ′

i

φi
, or if we prefer, (log(φi))

′ .
We shall take that as the definition of excess reproductive rate. Whatever the reproductive rates, equation
(9) tells us that m̄′ =

∑
i φiriai . The question is, what should the reproductive rates ri be?

Of course one possible answer is that the reproductive rates should be determined by a natural reward
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scheme. Remember that a reward scheme is natural if and only if equation (13) holds. Then by the definition
of excess reproductive rate, a reward scheme is natural if and only if for all i we have ri = Kai , for
some non-negative K that is independent of i. Let r be the vector of reproductive rates, so for any i, the
i’th entry in r is ri. So the natural reward schemes are those in which r is a scalar multiple of the vector a
(non-negative scalar). This is a useful alternative definition of “natural reward scheme”.

The literature contains a long history of attempts to show that r should be determined by a natural
reward scheme, that r should be a scalar multiple of a, that excess reproductive rate should be proportional
to excess value. This proportionality (which Holland calls “fitness proportional selection”) is seen by Holland
as having advantages, and Kimura tries to outline an advantage of it. [2] (Note that if reproductive rate is
proportional to value then excess reproductive rate must be proportional to excess value, but the implication
doesn’t hold in reverse.)

I am going to outline an advantage of the proportionality that I have not seen reported elsewhere. The
argument is not compelling, but I find it persuasive.

Let us be clear what we do and do not mean by proportional reproductive rates. Proportionality means
r = Ka for some scalar K. But K need not be a constant. It could depend on time, on φ, or on anything
else. Note that what Genetic Algorithms people call “fitness scaling” destroys proportionality.

15 Noise
So now let’s return to the question. What should the vector r be? Well, φ is traveling over the population
domain, and we want it to move uphill on the function µ. With no recombination the rate of climb is m̄′ .
With complete recombination, the rate of climb is ṁ′ , as given by equation (53), or equation (54).

Let’s go back and ask what we can get out of Fisher’s Theorem. It tells us that if we use proportional
reproductive rates then the rate of change of average value (the climb rate) will be some variance or other.
And a variance is positive (unless the ground is level) so we are going in a direction that takes us uphill.

But this is not the only uphill direction. If you are standing on a hillside you have a full 180 degrees of
uphill directions. Remember that m̄′ =

∑
i φiriai , so if we look at excess values ai and excess reproductive

rates ri then as long as for each genotype the two are the same sign, we head uphill in the asexual case.
Scaling of excess reproductive rate seems to work fine. And we can even head down in some coordinates,
provided we head up in others.

But what an engineer might ask is this. Okay, all these directions are uphill, but which takes us uphill
fastest? The engineer would be attracted to the steepest ascent direction. Proportional reproductive rates
do not give us steepest ascent, but we have seen in section 5 that if we scale the axes by taking the square
root then proportional reproductive rates do give us steepest ascent. What does this tell us?

Very little. The problem is obviously this. Once we stop talking about trying to ensure we are going
uphill and start trying to increase the rate at which we climb, we run into the obvious formal problem. If we
are going uphill, and we want to double the rate at which we climb, it’s trivial. Just double all the excess
reproductive rates. If we double reproductive rates, we double each ri, double each φ′

i, double the length of
φ′, and double m̄′. By equations (47), (49), and (53), we also double the length of φ̄′ and double ṁ′ . Thus
without changing the direction we are moving, we double climb rate by doubling speed. In effect, we have
simply doubled the learning rate. This is not biology, it’s engineering, and we, like god, can simply double
the rate at which things change.

For biologists looking at rate of increase in average value, the fact that in biological populations it’s
exactly the size of the variance of the values is important. For Genetic Algorithms researchers, who can
change at will the rate of learning, it’s only the fact that the variance is positive that is important. Its size
is irrelevant because we can always increase the rate of evolution by multiplying all the excess reproductive
rates by the same constant of proportionality.

So why don’t we do that anyway? Because it increases the sampling error noise that we discussed in
section 13. If we double the rate of evolution (double all the excess reproductive rates) then this doubles the
standard deviation of the noise, multiplies the noise variance by four. But notice that the noise is unbiased.
Our analysis has been using average values, and the noise is the difference between the true values and these
average values. So the noise is unbiased. So the noise will all average out in the end and cause no damage.

But of course that’s not true. One reason is that in a finite population, such noise can cause extinctions
of good schemata, what is usually called premature convergence. I’m going to assume that the standard
deviation of the noise in the reproductive rate is a good measure of this danger.

As an illustration, let’s assume we are using a natural reward scheme. This is of course much discussed
in the biological literature, for example in Kimura [2].
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As Kimura points out, the variance in payoff received by genotypes can often be thought of as composed
of three variances, the genic variance, the epistatic variance, and the environmental variance. Environmental
variance is the variance of values that vary because the environment is moving from state to state. In our
analysis we pretended that environmental variance was zero and that at any point φ, each genotype value
was fixed and equal to mi. In practice, the environment state8 changes in a pattern influenced by φ, the
genotype values fluctuate, and mi is merely the average value of genotype i at φ. Environmental variance is
a measure of the fluctuations. In our analysis above, V was all the variance except environmental variance.
Loosely speaking, it included genic variance and epistatic variance.

Kimura talks as if you can simply add genic variance, epistatic variance, and environmental variance. (as
in equation (45)) This is not true in general, but let’s for the moment talk loosely as if it were. The point is
this. Some of that variance is useful and some just causes trouble. Variance is useful if the reward scheme
is built to take advantage of it. Let me illustrate, still assuming we are using a natural reward scheme.

If reproduction is asexual, then the environmental variance is useless to us, but the rest of the variance
is useful, and the rate of change of average value can use that useful variance, as in equation (15) for
natural reward schemes. On the other hand, suppose we have complete recombination and consequently
the population has Hardy Weinberg ratios. Then that useful variance is in two bits, the genic variance and
the epistatic variance. But now that’s not all useful. Equation (15) becomes equation (55). Only the genic
variance is useful, and the epistatic variance as well as the environmental variance is useless.

Suppose we select a genotype and test it against the environment to get payoff. The payoff we get is
due to three things, the alleles present (their values), the epistasis, and the environment (the state the
environment happens to be in when we test). The three variances are respectively the variances due to the
variation of these three things. With complete recombination, only the first is useful, and the other two are
noise, whereas with no recombination, the first two are useful and only the third is noise.

I’m going to simplify the discussion by assuming that environmental variance is zero as we have done
in the previous sections, but I think the discussion can be extended to the nonzero environmental variance
case. In this discussion, in a given population a genotype gives the same payoff every time it is tested, and
that payoff is the value of the genotype, the partial derivative. (There are no cannibals or freeloaders.) So
with no recombination there is no noise. With complete recombination, the epistatic variance is the noise.
If there is complete recombination, the system merely learns which alleles are good, and doesn’t learn which
combinations of alleles are good. If a genotype is good merely because of epistasis, the system will never
learn that and the epistasis merely provides noise to a system trying to learn which alleles are good.

That discussion of noise was assuming a natural reward scheme, so it was really only illustrative. How
much of what we said holds in general? Let’s start over, now not making any assumption as to what reward
scheme we are using.

We want to discover what reward scheme is good. We want to discover what the excess reproductive rate
vector r should be.

Suppose we have the following simple situation. We have complete recombination and zero environmental
variance. The population is at Hardy Weinberg Equilibrium.

Let’s define for each locus set L the variance of the allele values at that locus. VL = N
∑

j∈L pjα
2
j We

will call that the locus variance. Then by equation (46) we have Vg =
∑

L VL .
The genic variance is the sum of n different locus variances, one for each locus. The variances all add

nicely. The total variance is the sum of these n locus variances and the epistatic variance.
All these quantities are defined from the genotype values mi. For our point φ, these genotype values are

given.
Now the game is as follows. We want for each genotype i to specify an excess reproductive rate ri. That

is, we want to specify an excess reproductive rate vector r. The idea is to select r to get high rate of increase
in average value (high climb rate) and low noise. Suppose we have a candidate vector r.

Now the ri’s are numbers just as the ai’s are, and we can use them to calculate analogues of total
variance, genic variance, and epistatic variance, just as if the ri’s were the excess genotype values. These
new quantities will of course be different from the old quantities, which we calculated using the excess values
rather than the excess reproductive rates. The new variances too are additive, since we have complete
recombination and Hardy Weinberg ratios.

We need some terminology to distinguish the quantities based on excess values ai from the analogous
quantities based on the excess reproductive rates ri. We will distinguish them by the prefixes value- and
rate- respectively. Thus we have a value-genic-variance and a rate-genic-variance, for example.

If we are worried about extinctions and premature convergence, it is the rate-variances that produce the
dangerous noise. Look for example at locus 1. Here the useful variance is the rate-locus-1-variance. This

8The location of the organism in the environment is part of the environment state.
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variance drives the adaptation at locus 1. The rate-epistatic-variance just provides dangerous unbiased noise
at locus 1. And so does the rest of the rate-genic-variance, the rate-locus-variances for the other loci. Most
of the rate-variance is just causing trouble.

So we want to choose r to get the rate-total-variance as low as we can, since the rate-total-variance is
mostly just noise. Define W 2 =

∑
iφir

2
i , so W 2 is the rate-total-variance. I said I would assume that

the standard deviation of the noise is a good measure of the danger noise can do. So W is a good measure
of the noise danger. I shall call W the noise measure. We want to get W as low as we can.

But of course if W is zero then evolution will stop and the climb rate ṁ′ will also be zero, so W must
not be too low. But it is clear that if two different r’s give the same W but different climb rates ṁ′ , then
we prefer the r with the higher climb rate. For any given value of W , we prefer the r with the highest climb
rate.

Define the effectiveness ratio to be the ratio of the climb rate to the square root of the rate-total-variance.
Here, the effectiveness ratio is ṁ′

W . It is something like a signal to noise ratio. We said that if we leave r
pointed in the same direction but double its length, then this doubles both m̄′ and ṁ′. It also doubles W ,
so the doubling has no effect on the effectiveness ratio. The effectiveness ratio depends on the direction of
r, but is independent of its length.

What we want to do is find the r direction that gives the largest effectiveness ratio. Then for any given
value of W , an r aimed in that direction and of a length to give the rate-total-variance of W 2 will give the
largest climb rate possible with that value of W . (And for any given climb rate value ṁ′ , an r aimed in that
direction and of a length to give a climb rate of ṁ′ will give the smallest rate-total-variance W 2 possible
with that value of the climb rate.) We shall show that this desirable direction is the same as the direction
in which â points.

16 The Asexual Case
Let’s begin by looking at the simpler asexual case. Here the climb rate is m̄′, and the effectiveness ratio is
m̄′

W . Of course in the asexual case, what the rate total variance W 2 measures is all useful variation, not
noise, so W is not a measure of noise and the effectiveness ratio is not a signal to noise ratio. It is merely
a measure of how well the variation produces climb. Like the complete recombination effectiveness ratio,
the asexual effectiveness ratio too is independent of the length of r. We now ask which r direction gives the
largest asexual effectiveness ratio.

As in section 5, we look at the square root space. We have φ traveling over the population domain in
our original space, and its image ψ traveling over a portion of the unit sphere in the square root space. We
have φi = ψ2

i for all i. We have the value function µ over the original space and the corresponding value
function f over the square root space. The value functions are defined over the whole positive orthant. If ψ
is the image of φ then f(ψ) = µ(φ) .

At any time, the velocity of ψ as it travels over the square root space is the velocity vector ψ′. Its speed
of travel is the length of this vector. I will write σ to mean the speed of travel. So σ2 =

∑
i (ψ

′
i)

2.
Now φi = ψ2

i . So we see that φiri = φ′
i = 2ψiψ

′
i. If we divide this equation by ψi, we get ψiri = 2ψ′

i.
If we now square both sides, we get φir

2
i = 4(ψ′

i)
2. If we now sum over i, we obtain W 2 = 4σ2. So we see

that W = 2σ.
So the effectiveness ratio is half of the climb-speed ratio m̄′

σ . The numerator of this climb-speed ratio
is the rate of climb of φ in the original space, which is of course the rate of climb of ψ in the square root
space. The denominator is the speed of ψ over the ground in the square root space. Like the effectiveness
ratio, the climb-speed ratio is independent of the length of r and depends only on the direction of r. We ask
which direction of r gives the largest climb-speed ratio.

The direction of r determines the direction of ψ′ , the direction in which ψ is moving. Clearly we get
the largest climb-speed ratio if and only if ψ is taking the path of steepest ascent in the square root space.
In section 5 we saw that if the ground is not level then there is one unique steepest ascent direction in the
square root space, and that ψ′ points in that direction if and only if we have a natural reward scheme,
that is, if and only if r is a scalar multiple of a. So r must point in the same direction as a for maximum
effectiveness ratio. If r points in any other direction, the effectiveness ratio will be less.

So in the asexual case, the effectiveness ratio is at its maximum when r is a positive scalar multiple of
a. In that case r = Ka for some positive K. Then we have φ′

i = φiri = Kφiai , and equation (10)
becomes m̄′ =

∑
i φ

′
iai = K

∑
i φia

2
i = KV . (equation (15))

Furthermore, W 2 =
∑

i φir
2
i = K2

∑
i φia

2
i = K2V . So m̄′

W =
√
V . So to sum up:
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Lemma 6 In the asexual case, anywhere the ground is not level we have the following: the effectiveness
ratio equals the standard deviation of the genotype values if the excess reproductive rates are proportional to
the excess genotype values, and it is less than that otherwise.

17 The Complete Recombination Case
Suppose we have complete recombination. Then the rate of change of m̄ is ṁ′. We must have linkage
equilibrium, so by equation (54) we have ṁ′ = âφ′⊤ .

Note that here the effectiveness ratio is ṁ′

W , where W is the square root of
∑

i φir
2
i .

Now φ is our current population. We want it to climb the value function µ.
We could define a different value function µ̇ to be µ̇(ϑ) = m̄+ (ϑ−φ)m⊤, where m is the vector whose

i’th entry is mi, the partial derivative at φ of µ(φ) with respect to φi . (see equation (2)) So µ̇ is simply
the linear approximation to µ near φ. Climbing this function is exactly the same problem near φ as climbing
µ.

But more interesting is the approximation µ̈ defined by µ̈(ϑ) = m̄ + (ϑ − φ)(m̄e⊤ + â⊤) . We see that
µ̈(φ) = µ(φ). More interestingly, ∂

∂ϑi
µ̈(ϑ) = m̄+ âi.

We look now at what certain quantities would be if our value function were µ̈ rather than µ and our
current population were still φ.

m̄ would still be m̄.
mi would be m̄+ âi.
ai would be âi.

(In other words, the µ excess value vector is a, but the µ̈ excess value vector is â. In effect, the switch to µ̈
removes the epistasis.)

V would be Vg.

So the µ̈ ground is level if and only if Vg = 0 .
The asexual climb rate m̄′ would be

∑
i φ

′
iâi instead of

∑
i φ

′
iai. That is, m̄′ would be âφ′⊤. Or to put it

another way, (by equation(54))

m̄′ would be ṁ′.

Whatever reproduction rates r we choose, the asexual climb rate on µ̈ at φ is identical to the complete
recombination climb rate on µ at φ.

The definition of W is independent of the value function, so the asexual effectiveness ratio using µ̈ at φ
is the complete recombination effectiveness ratio using µ at φ.

In the previous section, we showed that if the µ̈ ground is not level (Vg ̸= 0) then this effectiveness ratio
is highest when the excess reproductive rates r are proportional to the µ̈ excess values, which are â. So we
see that the effectiveness ratio under complete recombination is highest when r points in the same direction
as â and is lower than that if r points in any other direction. If r points in the same direction as â, then
we have r = Kâ for some scalar K. Then, ṁ′ = âφ′⊤ =

∑
i φ

′
iâi =

∑
i φiriâi = K

∑
i φiâ

2
i = KVg, and

W 2 =
∑

i φir
2
i = K2

∑
i φiâ

2
i = K2Vg. So the effectiveness ratio is

√
Vg .

To summarize:

Lemma 7 In the complete recombination case, anywhere Vg ̸= 0 we have the following: The effectiveness
ratio equals the standard deviation of the genic values if the excess reproductive rates are proportional to the
excess genic values, and is less than that otherwise. In other words, the effectiveness ratio is

√
Vg if the

vector r is a positive scalar multiple of â, and is less than that otherwise.

18 What Does This Tell Us?
The first thing we see is that all this tells us virtually nothing about the learning rate K and how big it
ought to be. The learning rate K is in effect a measure of sample size, how many samples we take for a
given amount of change we make. The smaller K is, the larger the sample size. And we know that a larger
sample size reduces noise but slows the changes. It does so in exactly the way we see here. As far as K is
concerned, our analysis tells us precisely what we knew already.

The second thing we see is that Lemma 7 doesn’t discuss the Vg = 0 case. But from equation (46)
we see that this case consists only of situations where every allele has zero excess value, only of situations
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where one allele is just as good as another. If that’s the case and there is complete recombination, then it
doesn’t matter what scheme we use.

But all this does seem to tell us that we should arrange that our excess reproductive rates are proportional
to excess genic values. This is pleasing, but also a little bit worrying because that is not what we usually do.
Usually we make our excess reproductive rates proportional to excess values. (We make r a scalar multiple
of a, not of â.) We use ai rather than âi for the obvious reason that calculating âi is a big mess, and ai
falls out easily and implicitly in the natural reproductive scheme. Let’s talk about this discrepancy between
what we do and what we ought to do.

Let’s continue with the complete recombination case. Suppose there were no epistasis. Then â = a, and
we see that what we do is exactly what we ought to do. In this case, r = Ka = Kâ, and since the âi’s
are linear combinations of the allele values, the ri’s are linear combinations of the allele reproductive rates.
Let’s look at this no-epistasis case from the point of view of an allele.

Suppose that there are 50 loci and that the value-variance at each locus is about the same. Suppose
there are three alleles that can be at locus 1. Let’s look at things from the point of view of one of those
alleles. I will call that allele “our allele”. Suppose we are doing what we are supposed to do and setting
excess reproductive rates proportional to excess values. To simplify, suppose we set K equal to 1, so we have
r = a = â. Then the excess reproductive rate of our allele equals its excess value, which is what we want.
But what about the noise? That allele would like the noise to be zero. That is, it would prefer that every
time an individual containing our allele is tested, the number of excess children it gets should be exactly the
excess value of our allele. All the individuals containing our allele should have the same reproductive rate,
and it should be the excess value of our allele.

But it isn’t. Some of these guys get more children than that and some get less, depending on what
alleles they have at other loci. That noise is unfortunate and threatens our allele with unjustified extinction,
but if we eliminate that noise to please our allele, then we get no evolution at the other loci and we lose
the opportunity the other loci give us for further improvement. There is a trade off. We want to use the
information at the other loci, but that gives us noise at the first locus. We want to use that information
some, but not too much. Our analysis here tells us that the optimum is achieved when we use it just enough
to make the excess reproductive rates proportional to excess values.

The point is that the value difference information at the other loci is both useful and destructive. We want
to use enough of it to benefit from its usefulness, but not so much that we suffer a lot from its destructiveness.
It turns out that there is an optimal proportion of it that we should use, an optimal K for those loci, and
the optimal K is whatever K we are using for the first locus.

Now suppose we have epistasis. Now there is even more information at the other loci and we would
expect it too to be both useful and destructive. But actually, because we have complete recombination, this
epistatic enformation is entirely useless because the recombination will destroy any use to which we put it.
So clearly we want to use none of this information if possible. We want r to be a scalar multiple of â, not a.

The analysis here doesn’t give us any reason to make r a scalar multiple of a rather than â, but here are
a couple of qualitative comments. I have already mentioned that one reason might be that âi is difficult to
calculate. Another reason might be that if there is any linkage, that is if the recombination is not complete,
then a lot of the epistatic information is actually useful and we wouldn’t want to ignore it.

I will leave this matter now. We have an argument for proportionality, but whether we want the ri’s
proportional to the âi’s or the ai’s is a more complicated issue.

So we seem to have produced a persuasive, if not compelling, argument for proportionality. On the face
of it, it provides an argument against what GA people call “fitness scaling”. Let’s take a look and see if we
really should avoid that scaling.

I had the pleasure of being involved in discussions with Yuval Davidor while he was working on his PhD.
He was using a genetic algorithm to evolve a good program to move a robot arm along a target path. He
used some rather violent “fitness scaling”, that is, his reproductive rates were not proportional to what I
would call value. I thought then and still think that the work was excellent and very interesting and that
his “fitness scaling” was perhaps appropriate. But let’s pretend for a moment that I had tried to talk him
out of his “fitness scaling”. The conversation might have gone something like this.

Yuval: You say, Tom, that you are worried about sampling error noise because it might cause
random loss of good alleles. But there are many copies of each allele in the population. It would
take an awful lot of noise to cause such a loss.

Me: But my comment about allele loss during complete recombination was only illustrative.
In practice we have linkage, and it is random loss of good short schemata that is the problem.
The number of copies of a short schema in the population might not be large.

Yuval: But if a short schema is lost it can be regenerated by crossover.
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Me: Yes and if an allele is lost it can be regenerated by mutation, but such regeneration
introduces a sort of random element. It replaces the power of evolution with unguided random
walk. This is clearest in the case of mutation. If a scheme needs mutation to work, there is
something wrong. That’s why I assume no mutation. Similarly, consider a good short schema
preserved by linkage, a schema whose good quality is due to epistasis within the schema, not
to the good quality of its alleles. Regenerating such a schema through recombination is just as
random and unguided as regenerating a good allele through mutation. Furthermore, with your
scaling there is in general no tendency for average value in the population to increase.

Yuval: So what? I don’t care about average value. I care about the value of the best
individual.

Me: An adaptive system must both explore and exploit, properly dividing its effort between
exploration and exploitation. Fisher’s Theorem tells us that as the genetic algorithm evolves,
exploring new promising genotypes, it continually increases the average value in the population at
a rate proportional to some variance of values. Thus the system’s performance tends to improve.
But look at the mess your scaling causes. Your reproductive rates are the cubes of the values.9
Now all Fisher’s Theorem can tell us about your system is that the average of the cubes of the
values is increasing at a rate proportional to the variance of the cubes of the values. With all
your recombination, the average of the values themselves could actually be falling. The values
measure how well individuals are doing. A system or population with falling values is like a
business running into debt. The fact that its research is superb won’t prevent bankruptcy if
it can’t exploit its knowledge while doing research. A population with falling values will die
out from starvation or be eliminated by other more successful populations. An individual that
intelligently learns but doesn’t exploit what it knows will die.

Yuval: What universe are you living in? My system isn’t fighting for survival in a jungle,
capitalist or otherwise. It’s learning to control a robot arm. As far as I am concerned, the
evolving population is doing exploration. When the exploration period is finally over, I select
the best individual and only then does exploitation begin. I’m no more interested in exploitation
during the exploration period than Chris Watkins was when he proved his Q-learning convergence
theorem.10 And anyway, who are you to say that I’m using the cubes of values instead of values.
What is the value of a program that guides this robot arm? Is it the reciprocal of the mean
distance from the target path, as you seem to think it is, or is it the cube of the reciprocal of
the mean distance? It comes down to this. You think I should be looking for the program with
the highest value, and I’m looking for the program with the highest cubed value. Isn’t that the
same program?

Me: A genetic algorithm doesn’t look for good genotypes. It looks for good schemata and
produces a population of them. Getting good genotypes is a side effect. A genetic algorithm
works when there is not too much epistasis, when the values of the building blocks (schemata) tell
us quite a bit about the values of the genotypes. Then new genotypes generated by recombination
will be promising ones. Then the populations of schemata that exploit our current knowledge are
the very populations from which further exploration should depart. When you cube the values,
you destroy the relationship between the schema values and genotype values. If epistasis was low
before you cubed the values, it could become very high afterward. Then your genetic algorithm
is little better than random search.

Yuval: Okay, maybe cubing increases epistasis. But maybe it decreases it. You have no way of
knowing which. What matters is what works, and my system works. What you have been stating
is not a bunch of proven principles, but merely generalized waffle illustrated by some formalism
that works only when there is no recombination or when there is complete recombination and
so is irrelevant to the situations we care about and is particularly irrelevant to my work. You
fear large epistasis. We avoid large epistasis if the building blocks and their values are in some
sense natural, meaning relevant to the particular problem. These matters cannot be properly
discussed without bearing in mind the actual details of the problem the genetic algorithm is
trying to solve, without actually running the experiments and finding out what works. If you
ever ran any experiments you would know that your conclusions are too categorical and your
criticisms misguided.

The above conversation is entirely imaginary and in it I have in places purposely misrepresented both
Yuval’s views and mine. But I thought such an imaginary conversation was the quickest way to sketch the

9Actually, Yuval’s reproductive rates were exponential functions of what I would call values. That’s even more violent scaling.
10Okay, Yuval wouldn’t have said that. His PhD predates Watkins’s proof.

24



context in which the results given here belong. As the conversation indicates, the issues are complicated and
the situation is unclear. The reader presumably has other arguments that were not mentioned above.

19 Is This Proportionality Argument New?
I have not seen in the literature the argument that we gave above for proportionality. Kimura ([2] section
5.9) discusses what he calls a Maximum Principle for natural selection. In [21] I gave the standard warning
against sampling error noise,11 and this warning also runs through the population genetics literature. In a
sense, the proportionality argument above combines Kimura’s Maximum Principle with that warning, but
with a strange twist.

If we translate Kimura’s statement of the Maximum Principle ([2] p. 234 bottom) into our notation for
asexual reproduction, it reads roughly as follows.12

Natural selection acts to change gene frequencies in such a way that
∑

i φ
′
imi is maximum for

a given value of
∑

i φia
2
i =

∑
i

1
φi
(φ′

i)
2 .

(
∑

i φ
′
imi is of course the climb rate m̄′.)

Now we see that Kimura’s statement is confusing and in fact seems to be circular. The problem stems
from the usual problem we encounter in the biological literature, the confusion of the two meanings of
“fitness”: value and reproductive rate. Maximizing

∑
i φ

′
imi for a given value of

∑
i φia

2
i makes no

sense. The sum
∑

i φia
2
i is V , and it is whatever it is, whatever choice of φ′

i’s we make, so we can make∑
i φ

′
imi as large as we like.

But Kimura didn’t mean
∑

i φia
2
i , he meant

∑
i φir

2
i , which is the right hand side of his little

equation (since φ′
i = φiri ). His proof uses that little equation13, which he proved earlier using the very

proportionality we need to justify. The circularity in Kimura’s statement permeates his illustrative proof
justifying it, and I found his argument terribly confusing.

The variance V is a measure of the variation on which selection can operate. Because Darwin didn’t
understand genetics as we know it, he feared this variance would drop too low for evolution to work. Since
then, it has been clear that it is best for evolution if the variance V stays high. The fear is that evolution
might itself cause V to drop, and to drop all the faster the bigger the climb rate. Kimura’s

∑
i φ

′
imi is

the climb rate m̄′.
In his illustrative proof of the Maximum Principle, Kimura uses Lagrange multipliers to maximize climb

rate m̄′ subject to two conditions. The first is
∑

i φ
′
i = 0 . “The second is that [variance V ]14 is

(momentarily) constant.” [p. 231] It sounds as if, like Darwin, he is worried about a drop in V and is
trying to get the biggest m̄′ he can without (momentarily) dropping V , though it’s hard to be sure what his
motive was.

To see things correctly, we must realize that while we would indeed like V to be high, V is not the
relevant variance. The relevant variance is

∑
i φir

2
i , and we want that variance to be low. If like most

biologists you use the word “fitness” to mean reproductive rate, then

We want the variance in fitness to be low.

This statement sounds so outrageously counter to all the biological language since Darwin that I was blinded
to its truth.

One year in the 1970’s, Holland was on sabbatical from the University of Michigan and Bernard P. Zeigler
taught his Adaptive Systems course. In his lecture notes for that course, Zeigler removed the circularity in
Kimura’s argument, producing a coherent proof. I later modified Zeigler’s proof in a small way by a square
root scaling of the axes, thus turning it into a steepest ascent proof, the Lagrange multipliers proof given in
section 5. I discovered later that taking square roots of probabilities is fairly standard now, and that Fisher
is connected with this technique, though evidently in a context different from what we have here.

But of course in removing the circularity in the argument, Zeigler had to remove the motivation. The
steepest ascent proof in section 5 is on the face of it unmotivated. Why should one want to follow the
steepest ascent path in the square root space?

The key to the argument here is connecting the admittedly damaging sampling error noise to the variance∑
i φir

2
i , as we did above in section 15. Once we note that the learning rate (the length of r) affects the

11but in a classifier systems context
12Kimura is actually there discussing the one locus case with recombination.
13See his equation 5.9.7
14He actually says “genic variance”, and calls it Vg , because he is discussing the one locus case with recombination.
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climb rate and the square root of that variance in the same way, we can quantitatively connect the two and
see that we can get the variance low if we follow the steepest ascent path in the square root space. That we
should try to get a variance low, not high, is the surprising twist.

If we look again at Kimura’s statement of the maximum principle and remove the circularity by removing
the left hand side of the little equation, Kimura’s statement becomes this: “Natural selection acts to change
gene frequencies in such a way that the climb rate m̄′ is maximum for a given value of the variance W 2 .”
This is true, and follows from lemma 6. It also acts to change gene frequencies in such a way that variance
W 2 is minimum for a given value of the climb rate m̄′ , but Kimura doesn’t say this.

The details of the Lagrange multipliers steepest ascent proof in section 5 are almost identical to the
details in Kimura’s argument. This is not surprising. The steepest ascent proof is the guts of the proof
of lemma 6, and Kimura’s corrected statement is a weaker version of lemma 6. But why do we want to
maximize the climb rate for a given value of the variance W 2 ? Because we want the variance W 2 to be
low. Kimura never says this. Presumably because he doesn’t believe it. He confuses W 2 with V , and he
knows V should be high.

It is possible that the Maximum Principle argument has been presented elsewhere as an argument similar
to the one I’ve given here. And it is possible that the argument here is a special case of arguments given
elsewhere, perhaps by Fisher. Investigation of these possibilities might provide useful insight.

20 Suppose there is no Epistasis
We said in section 13 that if there were too much epistasis there was a problem with Fisher’s approach.
But if epistasis is low, and Fisher’s approach works, does Holland’s story work too? Indeed, if there is no
epistasis do schemata have static values?

The vector m is a vector of partial derivatives of µ. Suppose over a subset B of the population domain
the vector m is constant. (B could be the whole population domain, or it could be just the φ’s for which
φ̄ = φ, or any subset.) Then by equation (3) we see that m̄ is linear over B. (The mi’s in equation (3) are
constant.)

Now suppose in addition that Ve = 0 everywhere in B. Then we always have ai = âi.

Trivializing Assumptions: Suppose that over B: the mi’s are constants independent of φ,
and Ve = 0.

Then if our distribution φ is in B, we have â = a. (Since Ve = 0)

Lemma 8 Suppose the trivializing assumptions hold.
Then if k and γ are alleles in the same locus set, αk − αγ is the same for every φ in B.

Proof: Let i be a genotype for which cik > 0. (There must be one.) Then let ℓ be a genotype identical to
i except that one of the k alleles is replaced by γ. So cik = cℓk + 1, and ciγ = cℓγ − 1, and for any allele j
different from k or γ we have cij = cℓj . Then by equation (26) we have âi − âℓ = αk − αγ . Since Ve = 0, we
have ai = âi and aℓ = âℓ. By equation (5), mi −mℓ = ai − aℓ. Thus mi −mℓ = αk − αγ . And both mi and
mℓ are independent of φ, so long as φ ∈ B. 2

We now look at two distributions in B, which we can call φ and φ̈. We will use the ¨ to distinguish
quantities given by φ̈ from the corresponding quantities (p, α, etc.) given by φ. For example, the conclusion
of lemma 8 tells us that αk − αγ = α̈k − α̈γ .

Lemma 9 Suppose the trivializing assumptions hold.
Then m̄ = ¨̄m+N

∑
k pkα̈k; and if j is in locus set L, we have αj = α̈j −

∑
k∈L pkα̈k.

Proof: By lemma 8, if k and j are alleles in the same locus set L, then αk−αj = α̈k−α̈j . So α̈k−αk = α̈j−αj .
Multiplying by pk gives pkα̈k − pkαk = pkα̈j − pkαj . Summing over all k in L and using equations (20) and
(24) gives

∑
k∈L pkα̈k = α̈j−αj , provided j ∈ L. (This yields the second half of the lemma.) We now multiply

by cij and sum over all j in L. By equation (19), this gives N
∑

k∈L pkα̈k = (
∑

j∈L cijα̈j) − (
∑

j∈L cijαj).
We now sum over all L, to obtain N

∑
k pkα̈k = (

∑
j cijα̈j)− (

∑
j cijαj). By equation (26), the right hand

side is ¨̂ai − âi. But by the trivializing assumption Ve = 0, we have âi = ai and ¨̂ai = äi, so the right hand
side is äi − ai, or (m̈i − ¨̄m) − (mi − m̄). But by the trivializing assumptions, m̈i = mi, so the right hand
side is m̄− ¨̄m, and the whole equation is N

∑
k pkα̈k = m̄− ¨̄m. 2
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We see from lemma 9 that if the trivializing assumptions hold, then m̄ is a linear function of the pj ’s.
This is true even if the population is not at linkage equilibrium, since ai is always equal to âi. We can let φ̈
be the uniform distribution and then the α̈j ’s are what some genetic algorithms people call the static values
of the alleles. We see that in this case, static values do indeed have some significance, but they have this
significance only when the trivializing assumptions hold. It may be useful to re-write the first equation in
lemma 9 as

m̄ = N
∑
k

pk

(
¨̄m

NL
+ α̈k

)
, (57)

so the constant ¨̄m
NL + α̈k could be thought of as the static value of allele k.

Let’s abbreviate that static value as β̈k. Suppose allele k is in locus set L. Then at φ, the average of all
the static values of the alleles in locus set L is

∑
j∈L pj β̈j =

¨̄m
NL +

∑
j∈L pjα̈j . We can subtract this from

β̈k to obtain the excess static value of k at φ. It is α̈k −
∑

j∈L pjα̈j .
Now suppose we have a natural reward scheme. We can derive a formula for pj ′ in terms of the static

allele values. From equation (48) and the second half of lemma 9, we have pj ′ = Kpj(α̈j −
∑

k∈L pkα̈k). So
p′j is Kpj times the excess static value, a static version of equation (48).

But of course the trivializing assumptions do not usually hold. Allele values are population dependent
quantities. Fisher’s analysis, as discussed in this paper, points the way toward the proper approach. The
trivializing assumptions are unnecessary, and they throw away very important features of the real world.

21 An Attempted Defense of Holland’s Story
But wait a minute. If we are already assuming restrictions on interaction between genotypes, then if there
are enough restrictions, each mi will be nearly independent of the genotype frequencies. And if we are
assuming restrictions on distant genes, then if we look at short schemata we see that epistasis between the
various short schemata is low. So we see that if we think of short schemata where we previously thought of
alleles, then the trivializing assumptions nearly hold. Then by lemma 9 and equation (57), each such schema
has a value that is nearly independent of the population and we see that m̄ is a nearly linear function of
the schema probabilities, where the coefficients are the (nearly constant) schema values. Of course the fact
that schemata overlap complicates the story, but not fundamentally, as far as the point here is concerned.
We can think of the schema values as static values, or true values, independent of the population. We
admitted above that a population was only a sample, and now Holland’s story that successive populations
are successive samples used to estimate these schema values makes sense.

So schemata have static values (or nearly static). The purpose of the evolutionary mechanism is to
estimate these values. The value of an individual to a population (it’s marginal utility) is given by adding
up the values of its schemata (with provisions for overlapping schemata and with some small epistatic
unbiased noise). Any value in what an individual does is dictated (in the long run) by the genes of which the
individual is made. These genes say how well the individual responds to the problems set by the environment.
Holland’s story leads us to this Fisher-like view, a view popularized in its extreme form by Dawkins. [3]
The evolutionary process will work better if it quickly replaces bad schemata (low value schemata) in the
population by good schemata. Evolution has become an efficient process and so this replacement is very
fast. Evolutionary pressure on schemata is strong, and evolution is fast, as in the case of the Birmingham
moths. Thus concerns of eugenicists like Fisher are plausible concerns. Social safety nets can hinder the
elimination of bad schemata, or even cause them to spread through the population. Equality of opportunity
is both impossible (since different individuals hold different genes) and dangerous (since such equality could
cause bad schemata to spread). An allele for low salary causes economic difficulties in the population, and
economic distress would be alleviated if we could reduce the prevalence of this allele. (I’m thinking here
of the brown-eye allele, which has a much lower salary than the blue-eye allele. Remember that an allele’s
value (salary) is the average of the values (salaries) of the individuals containing it. Diploidy doesn’t affect
this argument.)

22 The Defense Fails
But that’s ridiculous. It’s true that both Fisher’s approach and Holland’s story use linear approximations
and assume some restriction on the interaction between genotypes, but the way they do it is very different.
Both start with the same value function µ, and both use linear approximations to the value, but they do it
very differently.
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Holland’s story uses a linear approximation based on partial derivatives at a particular special point φ̈.
The resulting linear approximation to the value function µ, to the value m̄, is exactly correct at point φ̈ and
good at points near φ̈, but increasingly bad as we get farther and farther from φ̈. Holland’s story would
have us climb this linear approximation. As we go up the linear slope, getting farther and farther from
φ̈, the function we are climbing is increasingly losing touch with reality. Eventually we find our current
population φ at a point where the linear function and the true function µ have little to do with each other.
The population φ is still climbing the linear function, but on the true function µ it could be heading straight
downhill. This is not a noise problem. It is the deterministic track itself that can head downhill. The linear
approximation in Holland’s story is a ridiculous approximation.

None of this can happen in Fisher’s approach. Fisher’s partial derivatives are partial derivatives at the
point we are at, at the point φ. Fisher’s linear approximation is not ridiculous, it’s simply differential
calculus, and Fisher’s approach operates at points close to φ, where the approximation is good. In Fisher’s
approach, the deterministic track of φ cannot head downhill if the mi’s are what they claim to be.

Let me say that more carefully. We said that in Fisher’s approach there are problems estimating the
correct mi’s, both because of biases introduced by cannibals and other genotype interactions and because
of sampling error noise. Both of these problems are also present in Holland’s story. In both stories, these
problems can cause φ to take a step downhill.

But in Holland’s story there is the much bigger problem that as φ gets farther and farther from the
special point φ̈, its motion is based on the increasingly irrelevant partial derivatives at φ̈.

If the trivializing assumptions don’t hold, equation (57) and the equations in Lemma 9 are seriously
in error unless we are close to φ̈. By contrast, Fisher’s equations are all correct. Problems with Fisher’s
approach are matters like “Although equations (45) and (55) hold, it could be that Ve is close to V .” Both
Fisher’s approach and Holland’s story have such problems. Fisher’s approach highlights those problems
so we can address them. Holland’s story buries those problems by introducing a much bigger unnecessary
problem.

Fisher’s approach tries to get φ to climb up the local hill in the function µ. Fisher’s approach is
imperfect and there are the problems we have mentioned. But Holland’s story has φ heading off happily
into the distance when the hill it was supposed to be climbing has long been left behind.

Holland’s story makes no sense.

23 A More Sensible Approach
Luckily, Holland’s Genetic Algorithms have not heard Holland’s story. They do not head off into the distance.
They work fine. Their schemata do not have true values. Their schemata do not have static values. Their
schemata have population dependant values.

Holland’s story depends on the belief that a gene or schema describes some characteristic of an organism’s
response to problems set by the environment, indeed that an organism’s value is given by how well it
responds to such problems. This is essentially a perception oriented view of adaptation, evolution, learning,
and intelligence. Much of what Hebb said [10] is dominated by such perception orientation, though he
was dealing with learning in Neural systems rather than evolution in populations. Fu’s work (based on
Hebb’s ideas) explicitly restricts itself to perception. Holland hopes her experiments will eventually include
a complete loop from the system through the environment and back to the system.15 The loop would have a
forward leg in which the system action causes a change in the environment (this change is the environment’s
response), and a return leg in which the environment’s action causes a change in the system (this change is
the system’s response). Perception is merely the return leg. This return leg is the exclusive focus of Fu’s
PhD work. [7] By contrast, the forward leg, the action of the system on the environment, has been the focus
of Paul Scott’s work [18], particularly when he was studying the cat motor cortex. Indeed, Holland’s work
traditionally focused on the action of the system on the environment, rather than on the return (perception)
leg of the loop from the environment back to the system [11]. My own work begins with Holland’s traditional
bias and modifies the system to include perception as a secondary mechanism [23]. It is the interaction of
system and environment that is the starting point of a sensible analysis. The system’s response to the
environmental problems is only half of the interaction. The effect of system action on the environment is
the other half. Organisms do not merely try to reproduce within a context of environmental problems set
by the “laws of nature” in their environment.

“It is a long way from the ‘laws of nature’ to the horse’s hoof. Rabbits, kangaroos, snakes, and
grasshoppers, all of whom traverse the same ground as the horse, do not have hooves. Hooves

15personal communication, to myself and also to Fu
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come not from the nature of the ground but from an animal of certain size, with four legs, running,
not hopping, over the ground at a certain speed and for certain periods of time. The small gracile
ancestors of the horse had toes and toenails, not hooves, and they got along very well indeed. So,
too, our central nervous systems are not fitted to some absolute laws of nature, but to laws of
nature operating within a framework created by our own sensuous activity. Our nervous system
does not allow us to see the ultraviolet reflections from flowers, but a bee’s central nervous system
does. And bats ‘see’ what nighthawks do not. We do not further our understanding of evolution
by general appeals to ‘laws of nature’ to which all life must bend. Rather we must ask how, within
the general constraints of the laws of nature, organisms have constructed environments that are
the conditions for their further evolution and reconstruction of nature into new environments.
“It is difficult to think of any physical force or universal physical law that represents a fixed
problem to which all organisms must find a direct solution. We think of gravitation as universal,
but because it is such a weak force, it does not apply in practice to very small organisms suspended
in liquid media. Bacteria are largely outside the influence of gravity as a consequence of their
size, that is, as a consequence of their genes. On the other hand, they are subject to another
universal physical force, Brownian motion of molecules, which we are protected from by our large
size, again a result of our evolution. The most remarkable property of living organisms is that
they have avoided biologically the chemical laws of mass action and the high energy needed to
initiate most chemical reactions; both have been accomplished by structure. The structure of the
genes themselves, and the way they are held together in very large macromolecular structures,
makes it possible for gene replication and protein synthesis to take place even though there is
only a single molecule of each gene in each cell. The structure of enzymes, in turn, makes it
possible to carry out at ambient temperatures chemical reactions that would otherwise require
great heat.
“It is impossible to avoid the conclusion that organisms construct every aspect of their envi-
ronment themselves. They are not the passive objects of external forces, but the creators and
modulators of these forces. The metaphor of adaptation must therefore be replaced by one of
construction, a metaphor that has implications for the form of evolutionary theory.”
(Levins and Lewontin [16, pages 103 and 104])

The approach in [23] tries to follow the spirit of the previous quote, but it falls short. The approach
in [23] thinks of the environment as a large finite automaton with a payoff attached to each state. Following
Holland’s traditional bias, it is the action of the system on the environment that is fundamental, and the
action of the environment on the system (perception) secondary. But in [23], the action of the system merely
changes the environment state, it doesn’t change the state diagram. To change the diagram, the approach
in [23] would need to be extended. The system, which in [23] is a classifier system, could be expanded and
part of it only could be what we would call the system. The rest could be part of the environment. In this
coevolutionary context, we would see the environment state diagram changing, and the system action would
affect these changes. Whether this extension captures the essence of the real world situation is not clear.

Even unextended, the approach in [23] captures some of what we need. It is easy to see that there the
system-environment complex forms a large Markov chain, and that in this chain, the average payoff per
time unit is a rational function of parameters in the system. It is possible to view the system there as a
population, with genotype probabilities given very simply by the parameters. Thus the average payoff per
time unit becomes a rational function of the genotype probabilities. This is just what we need for Fisher’s
analysis. The function is the function µ of section 4. Thus we can use the general Fisher results to analyze
the system-environment interaction through analyzing µ and interpreting the results. That we can so use
Fisher is not a peculiarity of the scenario in [23]. Many scenarios, both sequential and parallel, in genetic
algorithms and biology produce the required differentiable µ. (For example, consider Axelrod’s work. [1])
Thus Fisher’s results give us an insight into system-environment interaction, the proper subject of our study.

If we make the trivializing assumptions, we conceptually break the interaction loop and are left with
only the effect of the environment on the system, an effect which alone determines the schema values. Our
results then become simplified to a situation that doesn’t obtain in the situations we care about. Holland’s
story makes this very mistake. It concentrates on the perception side of the interaction.

Holland traditionally concentrated on the action part of the interaction. [11] His traditional approach
was amenable to Fisher’s general analysis. He insisted that all his students read Fisher. Holland’s story is a
turning away from Holland’s traditional approach. Holland’s story concentrates on the perceptual side of the
interaction at the cost of the action side. It prevents us from understanding the nature of system-environment
interaction.
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24 Streamlining
Holland’s traditional approach uses Fisher’s theorem to make the general argument that if average repro-
ductive rate is proportional to value, then φ will tend to move to increase µ(φ). This argument is general
and does not depend on the trivializing assumptions required by Holland’s current16 story. Neither does it
expect quick replacement of some schemata by others, as does his current story. The argument works when
value differences are small as well as when they are large.

Much of adaptation (be it evolution or learning) works by simplification and streamlining, as redundant
features are reduced or eliminated. More advanced organisms have got where they are by such simplification,
be it simplification in flower construction, aortic arches, arthropod appendage numbers, or organization of
prokaryote genomes.17 Modern eubacteria are particularly advanced in this respect, having eliminated many
redundancies. Such streamlining is the basis of the evolution of complex organization.

This streamlining and reduction of redundancy relies on taking advantage of very small value differences.
Holland’s traditional approach uses Fisher’s results to argue that such slow adaptation will occur if repro-
ductive rate is proportional to value. Streamlining and elimination of redundancy will slowly take place. The
resources freed by this become available for new organization, the building blocks of which include the now
streamlined pieces of the organization already achieved. For Holland, one of the main attractions of Hebb’s
Cell Assembly Theory was that, in that theory, as cell assemblies were used, they became more compact and
streamlined, freeing redundant neuronal units for use in other cell assemblies.18 I do not understand why
Holland has rejected his traditional approach and produced a story that stresses quick schema replacement
in special cases of high value difference and rejects the rich promise of general organizational adaptation,
with its interplay of streamlining and complexity and its recognition that they are two sides of the same
coin.

25 The New Deal
Schemata do not have static values; they do not have true values. Any values they have are effects of system-
environment interaction and so depend on the current population. Individuals’ values are not the result of
their schema values, they are the result of interaction with the environment and the current population. The
low salary (brown-eye) allele is a low salary allele in Detroit, but not in other populations where there is no
such history of racial discrimination. If a Detroit African-American kid does badly in school, it probably
does have to do with his genes, for if he had had different genes, he and his family would have had a different
skin color and hence his educational background would have been different. But notice that his value and the
value of his genes is given by the interaction of individual and environment, environment that the population
can change. If there is a problem, it is that very interaction that needs to be addressed, not the genetics.

If a student of mine has trouble understanding me, the natural conclusion is that someone somewhere has
failed to live up to what that student needs. [14] It is not easy to address such failings, but we must constantly
try to do so. We do not need some scientist telling us that maybe we have overlooked the possibility that
somewhere in the student’s DNA is a string that when decoded spells FAILURE.

Our School systems and indeed our whole society has so many failings that all of us are very far from
realizing our potential. By addressing these failings we can realize a vast untapped source of inspiration and
productivity. By empowering those people whom the system has failed and oppressed, we not only bring
about a more equal and more just society, we bring about a far more prosperous one. It’s only Common
Sense.

“Now I come to the links which will build us a more lasting prosperity. I have said that we cannot
attain that in a nation half boom and half broke. If all of our people have work and fair wages
and fair profits, they can buy the products of their neighbors and business is good. But if you
take away the wages and the profits of half of them, business is only half as good. It doesn’t help
much if the fortunate half is very prosperous – the best way is for everybody to be reasonably
prosperous.” ( Franklin Delano Roosevelt, Fireside Chat, Monday, 24 July 1933)

16By “current” I mean 1998, the year of the argument this paper is part of. (See the note at the start of this paper.)
17See [22] for further discussion.
18My evidence that such compactification was a main attraction for Holland is second hand. He evidently stated this in a

conversation with Fu in early 2001.
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