
Learning Resembles Evolution
even when using Temporal Difference

Tom Westerdale

June 10, 2025

Abstract
A learning system can be said to learn strings of actions. An evolving population can be said to evolve

strings of genes. In a broad class of adaptive plans, the string frequencies change according to the same
simple formula whether the strings are strings of actions in time or strings of genes in space, just as John
Holland foresaw. Time symmetric analysis shows this in the basic case where the Markov property holds
in the learning system. In this paper we extend that analysis to simple actor critic systems where the
actor and critic use the same feature detectors and the critic uses a simple temporal difference method.
Much rule based work in evolutionary computation is based on a special case of such systems. The
system-environment complex can be viewed in two equivalent ways, in a reinforcement learning way, and
in a hierarchical string population way. This is the case even when there is no explicit hierarchy in the
reinforcement learning view. Some fields of study emphasize the first view; others emphasize the second.
Our equivalence result helps connect problems and investigations across the fields. A major problem is
freeloaders that cause bias in value estimates.

Key Words: adaptive systems, reinforcement learning, evolutionary computation, temporal differ-
ence, average step convergence, bucket brigade, freeloaders, discount, actor-critic.

1 Value Estimation and Adaptation
A brain learns. A population evolves. In his 1975 book, Adaptation in Natural and Artificial Systems [4],
John Holland placed these adaptive systems and others in a common formal framework. He believed that
learning and evolution are similar adaptive processes.

But a formal approach highlighted problems. Reinforcement Learning [8] deals with conditional proba-
bilities of actions, whereas evolution deals with unconditional probabilities of genes and gene strings. These
different probabilities seemed to change and adapt differently. Learning and evolution seemed different. The
fields of Reinforcement Learning and Evolutionary Computation drifted apart.

Our work shows that if we take a time symmetric aproach in the formal framework, then the proba-
bility changes are not really different. Learning and evolution are similar. Reinforcement Learning and
Evolutionary Computation can now get back in touch. Holland was right.

Through interaction with the environment, a learning system learns what to do, which actions to take
when and in what combinations. An evolving population, through interaction with the environment, learns
which genes are appropriate when and in what combinations. A learning system can be said to learn strings
of actions. An evolving population can be said to learn strings of genes. In a broad class of adaptive
plans, which I call Natural Plans, string frequencies change according to the same simple formula whether
the strings are strings of actions in time or strings of genes in space. The frequency changes preserve the
hierarchical structure of strings and substrings. Learning and evolution are similar adaptive processes. We
have shown this by first analyzing the basic case where the Markov property holds in the learning system
and then extending the analysis to cases where it doesn’t. We analyzed the basic case in the paper Learning
Resembles Evolution – the Markov Case [12]. In the present paper we extend that analysis to cases where
the Markov property fails.

In this paper, the adaptive system takes an action in each time step. Each action causes a change
in the environment state. The system makes a probabilistic choice of which action to take, so the whole
system-environment complex is a Markov chain. We assume it has a finite number of states. We assume
that attached to each state of the chain is a fixed number that we will call the state’s payoff.1 When the

1In Reinforcement Learning, the word reward means payoff, whereas in Evolutionary Computation, reward usually means
reinforcement.

1

chain enters a state, the system receives payoff equal to the payoff number attached to that state. I write
m̄ for the average payoff received per time step.

The adaptive system continually adjusts the probabilities with which it chooses actions. It does this in
an attempt to increase m̄ . The chain transition probabilities are functions of the action probabilities, so
the system is adjusting the Markov chain transition probabilities. It wants the probabilities of high value
transitions to go up.

A transition’s total value is the sum of its pre-value, which reflects payoff received in time steps before
the transition, and its post-value, which reflects payoff received in time steps after the transition. Two
transitions from the same state have the same pre-value, so machine learning procedures ignore pre-values.
But here we analyse those procedures using total values. The procedures haven’t changed. Only the time
symmetric analysis is new.

It is often useful to conceptually separate the adaptive system into two parts, the critic and the actor.
[2] The critic observes the sequence of state transitions and payoffs, and it prepares estimates of post-values,
which it passes to the actor. The actor takes actions and it adjusts the probabilities on the basis of the
post-value estimates it receives from the critic.

In many systems the separation of critic and actor is not clean, the two parts are rather merged, and
more information flows between the two parts. In that case, the separation into actor and critic is rather
contrived. Nevertheless, attempting the separation can be informative. In this paper we speak often of the
critic and actor. The critic does value estimation, whereas the actor does adaptation. The critic adjusts
value estimates using a value estimation method. The actor adjusts probabilities using an adaptive plan. In
this paper, the critic uses a temporal difference value estimation method.

Before we discuss value estimation and adaptation, we will examine the Markov chain. In subsections 2.1
and 2.2 we introduce our notation and precisely define the chain quantities. In particular we make precise
what we mean by state value and transition value. (Section 2 is a summary of [12] without the proofs)

2 Adaptive Markov Chains
2.1 Notation
All vectors in this paper are row vectors. Their transposes are column vectors. Each of the vectors in this
section is a row of N complex numbers. A vector is non-negative if all its entries are non-negative real
numbers. A vector is called stochastic if its entries are all non-negative real numbers and the entries sum
to 1.

In most cases we will use the following notation. A vector will be a bold lower case letter, for example,
v . Each entry in the vector will be written using the corresponding italic letter thus, vi . A matrix will
be an upper case italic letter, for example, M . Each of its entries will be written using that same letter
thus, Mij .

The vector e is the vector of all ones. The vector ei is the vector whose i’th entry is 1 and whose other
entries are all 0.

Our matrices will be N ×N matrices of real numbers. A matrix is non-negative if all of its entries are
non-negative real numbers. A matrix is row stochastic if each of its rows is a stochastic vector. So we see
that a matrix A is row stochastic if and only if A is non-negative and Ae⊤ = e⊤ .

To normalize a non-negative vector means to change its entries, dividing each entry by the sum of all the
entries. So the normalized vector is stochastic. To row normalize a non-negative matrix means to normalize
each of its rows, to divide each entry by the corresponding row sum.

If v is a vector, then diag(v) is the diagonal matrix whose ii’th entry is vi , for all i .
We will be discussing a Markov chain that has N states. (The states are numbered fom 1 to N .) When

I say Markov chain, I will mean a Markov chain with N states. (N ≥ 2)
Attached to each legal chain transition i→ j is a positive real number sij that I call its availability.

If there is no legal transition from i to j then sij = 0 . The matrix S is the N ×N matrix of
transition availabilities sij . Adaptation will change the availabilities.2

The matrix P is the row normalized S . The number s̄i is the i’th row sum of S . So
Pij = sij s̄

-1
i .

The matrix P is the chain’s transition probability matrix. If i→ j is a legal chain transition, then
Pij is the transition probability. By that I mean that Pij is the conditional probability that the next
state is j , given that the current state is i . If i→ j is illegal then of course Pij = 0 . The transition
probability of every legal transition is positive. We see that P is row stochastic.

2The matrix S is the only matrix whose entries I write with a lower case letter, sij .

2

Our Markov chain will be strongly connected, which means that for any ordered pair of states ⟨i, j⟩ ,
there is a sequence of legal transitions that takes the chain from state i to state j .

The vector p̃ is the state absolute probability vector. The entry p̃i is the probability the chain is in
state i . Every state probability p̃i is positive.3 We note that p̃P = p̃ . We define Fij = p̃iPij ,
so Fij is the frequency or unconditional probability of transition i→ j .

Attached to each state i is a fixed unchanging real number mi called its payoff. As S changes,
P changes, but the payoff vector m remains the same.

2.2 Chain Values
When the chain visits state i , the system receives payoff equal to mi . So in each time step, the chain
changes state and the system receives payoff. I write m̄ for the average payoff received per time step. So
m̄ = p̃m⊤.

The actor adjusts S , and this changes the probabilities P and all the other quantities including m̄ .
The hope is that m̄ will rise. I use the term excess payoff to mean payoff minus m̄ . The vector a is
the state excess payoff vector, that is, ai = mi − m̄ . Of course the average excess payoff is zero.
p̃ a⊤ = 0

The post-value ci of state i is the expectation of the total excess payoff the system would receive on
and after a visit to state i. That is,
ci =

∑
c∞k=0(eiP

ka⊤) (I write
∑
c for Cesaro summation.)

We use Cesaro summation to iron out any periodicity in the chain.
We define the matrix P̂ = I − P + e⊤p̃ . We know that P̂ is nonsingular, that ci = eiP̂

-1a⊤ ,
and that the Cesaro sum converges.4

We define hij = cj − ci + ai . It says how much better i→ j is than the average transition from
i . I call it the choice value. We also define the correction factor qi = p̃is̄

-1
i . Our definitions are

summarized in the table below.

Symbol Meaning Defining Equation
s̄i availability row sum s̄i =

∑
j sij or s̄ = eS⊤

S̄ S̄ = diag(̄s)
Pij probability of i→ j Pij = sij s̄

-1
i or P = S̄ -1S

p̃i probability of state i
D D = diag(p̃)
Fij frequency of i→ j Fij = p̃iPij or F = DP

P̂ P̂ = I − P + e⊤p̃
m̄ average payoff m̄ = p̃m⊤

ai excess payoff of state i ai = mi − m̄

ci post-value of state i c⊤ = P̂ -1a⊤ =
∑
c∞k=0(P

ka⊤)
hij choice value of i→ j hij = cj − ci + ai
qi qi = p̃is̄

-1
i

It is straightforward to show these facts.

p̃ = p̃P = p̃P̂ = p̃P̂ -1 and e⊤ = P e⊤ = P̂ e⊤ = P̂ -1e⊤ (1)
p̃ a⊤ = 0 and p̃ c⊤ = 0 (2)

(I − P) c⊤ = a⊤ and ci − ai =
∑

j
Pijcj (3)∑

j
Pijhij = 0 (4)

We note that P is the row normalized F . Let the matrix B be the row normalized F⊤. The
entry Bij is the conditional probability that the previous state was j , given that the current state is i .
The matrix B is the transition probability matrix of a different chain. I call it the backward chain and call
the original chain the forward chain.5 The state probabilities in the backward chain are the same as in the
forward chain. So are the state payoffs.

3Since the chain is strongly connected, the absolute state probabilities are well defined.[6] That they are all positive follows
directly from the Perron-Frobenius Theorem.[3]

4 For discussion and proofs see [12]. In reinforcement learning, values are often discounted; in evolutionary computation this
is rarely done. The discounted post-value vector is c⊤ =

∑∞
n=0(γ

kPka⊤) , where 0 < γ < 1 . In this paper, nothing is
discounted.

5The backward chain is sometimes called the time reversed chain.

3

Post-value in the backward chain is pre-value in the forward chain.
Total value is pre-value plus post-value. Total value is time symmetric.
So we have the following additional definitions

Symbol Meaning Defining Equation
Bij backward probability Bij = Fji p̃

-1
i or B = D -1F⊤

B̂ B̂ = I −B + e⊤p̃

bi pre-value of state i b⊤ = B̂ -1a⊤ =
∑
c∞k=0(B

ka⊤)
vij total value of i→ j vij = bi + cj
v̄i total value of state i v̄i = bi − ai + ci

It is straightforward to show the following unsurprising facts.

(I −B)b⊤ = a⊤ and bi − ai =
∑

j
Bijbj (5)∑

j
Fijvij = p̃iv̄i and

∑
i
Fijvij = p̃j v̄j (6)∑

i
p̃iv̄i = 0 and

∑
ij
Fijvij = 0 (7)

We can extend the notion of the total value of a transition and define what we can call the total-value of
a string of transitions. We write υσ to mean the total-value of string σ . To avoid introducing unnecessary
notation, I shall avoid giving a formal definition. I shall merely illustrate with an example.

We choose an illustrative string σ .

σ = (α→ β)(β → i)(i→ j)(j → δ)(δ → ε) (8)

The frequency φσ of string σ is this.
φσ = p̃αPαβPβiPijPjδPδε .
The total value of σ is this.

υσ = bα + aβ + ai + aj + aδ + cε (9)

The pre-value bα and the post-value cε embody the interaction of σ with the environment, with the
preceding and following strings.

These definitions make sense. For example, suppose we select a random five transition string, selecting
each string σ with probability φσ . Then Fij is the probability that the third transition in the selected
string is i→ j . To see that this is the case, note that in general we have p̃iPij = Fij = Bjip̃j , so
if σ is the example string above, then we can write the string frequency φσ as
BβαBiβFijPjδPδε .
Now summing over α, β, ε, and δ gives us Fij .
The transition frequency is the sum of the frequencies of the strings it is in, just as in population genetics.
Furthermore, the total value of a substring is the average of the total values of the strings it is in, just as in
population genetics. [12]

All the quantities defined in the this subsection are rational functions of S .
In particular, m̄ is a rational function of S , and for all ij we have

∂m̄

∂sij
= qihij . (10)

(Proofs of these statements are in [12].)

2.3 Natural Adaptive Plans
We now suppose that each entry sij in S is a continuous and differentiable function of some real parameter
t , which we can think of as time. It follows that all our quantities are continuous and differentiable functions
of t . We write ′ to mean derivative with respect to t . So the entries in the matrix S′ are the
derivatives s′ij , and the entries in the vector p̃′ are the derivatives p̃′i , and so forth.

Consider the simple scenario in which the actor directly controls each availability sij and in which the
critic passes to the actor the correct post-value ci of the current state i . The actor follows its adaptive
plan and makes small updates to the availabilities in an attempt to increase m̄ . Here is a simple example.

If the current transition is i→ j , the actor adds Kq -1i cj to sij .

4

The constant K is the learning rate. We see that s′ij = Fij(Kq
-1
i cj) = sijKcj . The adaptive plan

here is s′ij = sijKcj . An adaptive plan specifies the desired time derivatives s′ij of the availabilities.

Notation: In this paper, K is a positive real number.
I call it the learning rate. It is constant. It might be any positive real

We now define a class of adaptive plans that I call Natural Plans.

Natural Adaptive Plan
There are numbers β1, β2, β3,, βN such that

for all ij we have s′ij = sijK(βi + cj) .

Plan s′ij = sijKcj and plan s′ij = sijKhij are both Natural Plans.

In a Natural Plan we have m̄′ = K
∑
ij

Fijh
2
ij . (11)

This is the Markov chain analog of Fisher’s Fundamental Theorem of Natural Selection. It is proved in [12].
I call m̄′ the climb rate. Equations (11) and (10) tell us that in a Natural Plan, the climb rate m̄′ is
positive unless the ground is level.

Theorem 1
The following four conditions are equivalent. Either all four conditions hold or none of them do.
(1) There are numbers β1, β2, β3,, βN such that s′ij = sijK(βi + cj) for all ij .
(2) P ′

ij = PijKhij for all ij .
(3) F ′

ij = FijKvij for all ij .
(4) φ′

σ = φσKυσ for every transition string σ .

Theorem 1 gives us four equivalent definitions of Natural Plan. Definitions (3) and (4) are time symmetric.
Although obvious in retrospect, the time symmetric Theorem 1 long eluded us. Reference [12] is its proof.
Definition (4) is also the basic equation for an evolving population of strings σ of genes. The number of

copies of a string σ in the population is φσ . The reproductive rate of σ is φ′
σφ

-1
σ . We have value

proportional reproductive rate.6 Strings of transitions in time are behaving like strings of genes in space.
The high value strings are becoming more prevalent. Reinforcement Learning is behaving like Evolutionary
Computation. There are differences of course, but many of the fundamental principles operate in both fields.

3 Extending These Results
In Theorem 1, conditions (1) and (2) look like learning systems; conditions (3) and (4) look like evolving
systems. Theorem 1 connects learning and evolution.

But there is a big problem. Conditions (1) and (2) can’t really hold in an actual learning system.
Conditions (1) and (2) require the critic to keep track of the post-value of every state, and they require the
actor to keep track of the availability or probability of every transition. No learning system, no brain, is big
enough to do that, and there is not enough time in the universe to do all the updates. We need to re-design
the critic to amalgamate states and transitions, but then the post-value estimates will be wrong. And what
about the connection to evolution?

In the following sections we shall amalgamate transitions to form a so-called rule based system. A rule
is a set of transitions. The basic idea is that the transitions in a rule all have the same availability and the
same estimated post-value, so the system needs to keep track of only one availability and one post value
estimate per rule. The action of a rule causes one of its state transitions. We shall discuss the details, but
that’s the basic idea.

The amalgamation reduces the number of parameters the system needs to keep track of, but does it
destroy the similarity to evolution, and does the system still learn properly? We shall see that the rule based
system treats rules as if they were states of a Markov chain, and they aren’t. In the rule based system, the
Markov property does not hold.

Such rule based systems have long been used in Evolutionary Computation. They commonly use a
temporal difference value estimation process called the bucket brigade. Amalgamation causes biases in the

6Using questionable terminology, John Holland called this fitness proportional selection. The word “fitness” sometimes means
value and sometimes means reproductive rate. This confusion is a big subject in its own right. I avoid the word.

5

value estimates, and these cause learning problems. These biases have long been discussed.[10] But the
question for us here is the similarity to evolution. In subsection 5.3 we examine a simple version of such a
rule-based system, which I call a rule-bucket-brigade system. We show that its learning process is indeed
similar to evolution, and we discuss the irritating biases.

Reinforcement Learning typically carries the parameter reduction process further. In Reinforcement
Learning, the rule availabilities are a function of an even smaller number of parameters, and so are the
post-value estimates. Typically, a linear combination of the parameters determines the availabilities and
post-value estimates.

A really interesting Reinforcement Learning formulation is the actor-critic system on page 399 of Sutton
and Barto’s book.[8] But that actor-critic is too complicated to analyze properly in this short paper. So in
this paper we have made simplifications, and it is the simplified version that we analyze. We believe that
the simplified version retains the essentials of the approach.

Most of the simplifications are straightforward, but one deserves mention. In the simplified version,
the parameters that govern availability are updated in a manner that may seem novel. It’s not really novel,
because the way the updates affect the availabilities is the same as with other update methods. The simplified
update method is described in subsection 4.3.

We call the simplified version a shared-features-actor-critic system and describe it in subsection 5.2. We
show that its learning process is similar to evolution.

Formally, the rule-bucket-brigade system is a special case of the shared-features-actor-critic system. So we
will save time by describing the shared-features-actor-critic system first. When we describe it, our notation
will become a bit more complicated, so before we do that, let’s use our present simpler notation to look at
the biases that our post-value estimates will be subject to. How much damage can the biases do?

4 Faulty Critics and Faulty Actors
4.1 False Payoffs and False Values
In machine learning, a critic prepares post-value estimates, which it passes to the actor. The estimates
typically suffer from bias and from sampling error noise, and these distort what the actor does. Reinforcement
Learning and Evolutionary Computation have both developed many techniques to reduce that distortion.
Generally speaking, however, the distortion does not go away. We will not discuss any of these techniques
in this paper. What we need to discuss is the nature and effect of the bias.

Of course reducing learning rate K reduces the noise damage, but has no effect on the bias, so in this
subsection let’s assume that K is small enough that we can ignore the noise. Then we can concentrate on
the bias. Let w̄i be the critic’s estimate of the post-value of state i . Then the bias is w̄i − ci .
The Natural Plan s′ij = sijKcj then becomes

s′ij = sijKw̄j . (12)

It turns out that Theorem 1 has a lot to tell us about what happens when the actor uses this plan.
Let’s define a vector â⊤ of what I shall call false payoffs.

â⊤ = (I − P) w̄⊤ âi = w̄i −
∑
j

Pijw̄j (13)

The average false payoff p̃ â⊤ is zero, so the false excess payoffs are the same as the false payoffs. Let’s
now pretend that the excess payoffs are the false ones âi rather than the true excess payoffs ai . Using
the false excess payoffs, we define false post-values ĉi , false pre-values b̂i , false transition total values
v̂ij , false transition choice values ĥij , and false string total values υ̂σ . The definitions are just as for
the true values, but using â⊤ rather than a⊤ .
For example, here is the definition of false post-values.
ĉ⊤ = P̂ -1â⊤ .
Since p̃P̂ -1 = p̃ , we have p̃ ĉ⊤ = 0 . We also have
P̂ w̄⊤ = (I − P) w̄⊤ + e⊤p̃ w̄⊤ = â⊤ + e⊤p̃ w̄⊤ .
Multiplying on the left by P̂ -1 and using P̂ -1e⊤ = e⊤ gives us

w̄⊤ = ĉ⊤ + (p̃ w̄⊤) e⊤ w̄i = ĉi + (p̃ w̄⊤) = ĉi +
∑
j

p̃jw̄j (14)

6

So the plan (12) that the actor is using can be written

s′ij = sijK((p̃ w̄⊤) + ĉj) . (15)

This looks like a Natural Plan, except that we have false post-values in place of true post-values. I’ll call
such a plan a False Natural Plan.

Excess payoffs might be any real numbers whose average is zero. So the excess payoffs could be â⊤ ,
but they aren’t. They’re a⊤ . If they were â⊤ then Theorem 1 would still hold. So Theorem 1 holds
with all the values in it replaced by false values. Definition (4) says that in a False Natural Plan, strings
of transitions are still behaving like strings in an evolving population, but now the strings with high false
value are becoming more prevalent. The population still evolves as normal, but it evolves as if the payoffs
were the false ones.

In our False Natural Plan, equation (11) becomes m̄′ = K
∑
ij Fijhij ĥij , so m̄′ can be negative.7

How bad this is depends on how different the false payoffs are from the true ones, and this depends on
how badly the critic is doing its job. To investigate this, we need to look at the value estimation method
that the critic is using, and it is to value estimation methods that we now turn.

4.2 Markov Chain Value Estimation Using TDz
In this paper the critics use temporal difference methods. These excellent value estimation methods are
much less noisy than trace methods and so are particularly useful in learning. But they introduce damaging
biases that complicate the simple learning-evolution equivalence of Theorem 1. In this paper we address
those biases.8

Let’s suppose the critic uses the temporal difference method called undiscounted linear-TD(0). I shall
call it TDz for short. It works like this.9

There are ℓ functions,
ψ1, ψ2, ψ3, ..., ψℓ ,
from the set of states to the real numbers. These functions are fixed and unchanging.
They are called basis functions.

They are commonly thought of as features, and their values are called feature values. I’ll take a moment
to explain that terminology. A proper discussion of features is in [8].

Temperature and humidity are two features of the weather. Temperature has a current value that depends
on the current state of the weather, and its value changes as the state changes. Similarly for humidity. Of
course weather has more than those two features.

We can think of the Markov chain as the environment. In a checkers playing program it could be the
checkerboard. The chain (environment) has many different features, and linear-TD(0) uses ℓ of them, which
we number from 1 to ℓ. Each feature has a current value that depends on the current state of the Markov
chain (environment). The feature’s value changes as the state changes. For example, feature number 3 has
the value ψ3(i) whenever the state is i .

The critic has a feature detector for each feature. Feature detector number 3 examines the current state
of the chain (environment) and determines the current value of feature 3. So if i is the current state of the
chain, feature detector 3 produces the feature value ψ3(i) .

A thermometer is similarly a feature detector. It examines the current state of the weather and determines
the current value of the temperature feature.

We shall write ψk(i) as ψik . When the current state is i , the current feature values are
ψi1, ψi2, ψi3, ..., ψiℓ .
These are produced by the feature detectors and are available to the critic and to the actor.

The critic holds ℓ real parameters called weights.
z = ⟨z1, z2, z3, ..., zℓ⟩
The z vector is the weights vector. We define

z̄i =
∑
k

ψikzk . (16)

7Our equation (11) is proved in Lemma 7 of reference [12]. Use equation (15) in that proof.
8Usually when trace methods are used, the critic and actor are merged. The Policy Gradient Theorem [8] shows that

trace methods are unbiased, but they must be discounted to reduce noise, and the discount introduces bias-like distortions.
Adaptation using trace methods has long been seen as similar to evolution [9]. A simple example of bias in a temporal difference
method can be found in [10].

9The description here is basically Sutton and Barto’s description in [8] with the discount removed.

7

The number z̃i can be used as a guess at the value of state i .
It is the job of the critic to adjust the weights vector z to improve the state value guesses. When

transition i→ j occurs, the critic calculates what Sutton and Barto call the TD-error,
z̄j − z̄i + ai .
It then increments each zk by the amount

ε (z̄j − z̄i + ai)ψik . (17)

The number ε is a small fixed constant that we call the step size parameter.10

The increment can of course be negative. We would like to believe that this process converges in some sense.
Given the current z , there is conceptually the average of the possible increments to zk in the next

step. That’s
∑
ij Fij ε (z̄j − z̄i + ai)ψik . The average change in z I call the average step. We

can’t actually take an average step, but suppose we could. Holding the probabilities constant and taking a
sequence of average steps gives us a sequence of z vectors. That sequence always converges.11 We say that
TDz converges in the average step sense.12 The vector to which it converges I will call w .
So w is the limit weights vector.

Let’s define
w̄i =

∑
k

ψikwk . (18)

Since the sequence of z vectors converges to w , the sequence of z̄ vectors converges to w̄ . The
vector w̄ is the vector of value estimates.

The idea is that when the current state is i , the critic should pass the value estimate w̄i to the actor.
Well, if the critic has been running for a while, the z vector should be near its limit,13 and z̄i should be
near w̄i , so the critic can use equation (16) to obtain a number very close to w̄i and pass it to the actor.

Of course the actor is meanwhile goofing things up by changing the probabilities and so changing the
limit vector w , but we believe that if the learning rate K is small enough the critic should be able to
keep z close to the limit.

Now as in equation(13), we define the false payoff vector â .
The value estimate vector w̄ is not unique. It depends on the starting weights vector, the starting

z . If we start with two different weights vectors, we get two different sequences and probably two different
value estimate vectors w̄ , but we have shown14 that the difference between those value estimate vectors
will be a scalar multiple of e . So we see from the definition of â that the false payoff vector is unique
and independent of the starting weights vector. So all the false values are also independent of the starting
vector.

Now we come back to the question at the end of section 4.1. How badly is the critic doing? How much do
the false payoffs âi differ from the true excess payoffs ai ? How closely do the false payoffs approximate
the true ones?

Actually, not very closely at all. The limit weights vector w does not give us a good approximation.
There are other weights vectors that give us better approximations. But we do have the following result.15

For all k we have ∑
i

p̃iψikâi =
∑
i

p̃iψikai . (19)

We can think of
∑
i p̃iψikai as the average payoff allocated to feature k . I call it the feature’s payoff.

A feature’s false payoff is the same as its true payoff. A change from true to false payoffs conserves payoff
at every feature.

10Actually, Sutton and Barto use a TD-error of z̄j − z̄i+aj . The difference is not significant. (See [13].) The formulation
I’ve given fits in better with the notation in our discussion. Sutton and Barto also introduce a discount. In this paper, nothing
is discounted.

11provided the step size parameter ε is small enough. Remember, ε is constant.
12The convergence proof is in [13]. That proof is an extension of the discounted case proof that is in [8]. In [13] we give a

usable formula for the limit vector. Of course what the limit vector is depends on the probabilities. It doesn’t depend on the
step size parameter ε . In the literature, the naming of this kind of convergence seems confusing to me. I call it average step
convergence since at least that’s clear.

13We haven’t actually proved this. I have proved what amounts to this for the bucket brigade on Markov chains.[14] That’s
a special case of TDz.

14See [13].
15See [13] for proof.

8

4.3 Linear Availability Determination
Now let’s look at the actor’s problem. We said that typically the actor can’t keep track of every availability
sij . There are too many. One approach to this problem is for the actor to also use feature detectors to
produce availabilities when needed. Let’s re-design the actor to do this. For simplicity, let’s have it use the
same feature detectors as the critic.

The actor keeps a vector of parameters.
θ = ⟨θ1, θ2, θ3, ..., θℓ⟩
For each state j we define the state availability16

ϕj = exp

(∑
k

ψjkθk

)
. (20)

Then for every legal transition i→ j we define our transition availability
sij = ϕj .
(Of course if there is no transition from i to j then sij = 0 .)

The availabilities are functions of the parameter vector θ . The actor updates the availabilities by
updating θ . What should the updates be? Let’s try having the actor use the simplest update. Let’s
assume the critic passes to the actor the whole weights vector, and let’s for the moment assume that the
critic has in effect converged, so what the actor is getting is a copy of the vector w . Then the critic
simply increments every θk by the amount Kwk in every time step.

This gives us
θ′k = Kwk .
Taking time derivatives in (20) and using the previous equation and equation (18) gives us
ϕ′j = ϕjKw̄j .
Then for every legal transition i→ j we have
s′ij = sijKw̄j ,
and of course that equation holds trivially if there is no transition from i to j .
This is the False Natural Plan (12).

One problem with this approach is that it requires the feature detectors to be able to look one step into
the future. Suppose the current state is i . For every legal transition i → j coming from i , the
actor needs to compute sij , so it needs to compute ϕj using equation (20). So the actor needs to know
the numbers ψj1, ψj2, ψj3, ..., ψjℓ , and they aren’t yet available. One way to attack this problem is to
amalgamate transitions into what we call rules.

5 Simple Rule Based Actor-Critic
5.1 Rules
Let’s amalgamate our transitions into rules so that we have a rule based system in which just one rule fires
in each time step. I’ll describe formally what I mean.

Consider a subset x of the set of transitions in our Markov chain. We can think of x as a relation on
the set of states.17 Its domain Dom(x) is a subset of the set of states. A rule is such a relation x that
is a function from Dom(x) into the set of states.18 The domain is called the rule’s condition. If the
current state is in the rule’s condition, then we say the condition is met and the rule is eligible to fire. (In
this paper, “eligible” means eligible to fire, whereas in Reinforcement Learning, “eligible” means eligible to
be reinforced.)

A rule based system consists of a collection of such rules. Every transition is in at least one rule. In each
time step, the actor selects one of the eligible rules and it fires, causing a state transition in the Markov
chain. If the current state is i and rule x fires then the transition it causes is the transition from i that
is in rule x . We often think of a rule as a condition plus an action. It is the action that causes the state
transition.

We will write Ran(x) for the range of rule x . We will assume that the ranges of the rules are
disjoint. (The ranges are bound to be disjoint if the notion of state includes a specification of which rule
has just fired.) This means that the rules form a partition of the set of transitions. And since the chain is

16Equation(20), or rather equation (20*) of our subsection 5.2, is given in [8] as equations (13.2) and (13.3) in subsection 13.1
of [8].

17State i is related to state j just if i → j is a transition in x .
18That is, for each state i in Dom(x) , there is only one transition from i in rule x .

9

strongly connected, the ranges form a partition of the set of states. Assuming disjoint ranges will make our
notation and our formal arguments simpler. I will not continually repeat that ranges are disjoint, but the
reader should bear in mind that many formal statements in our discussion require disjoint ranges.

We can think of our Markov chain as the environment. Its states are states of the environment. I’ll call
it the environment chain, and I’ll call its states environment states.

In each time step, one of the eligible rules fires. The choice of which rule to fire is probabilistic and
governed by availability numbers. Amalgamation into rules makes for fewer availability numbers that the
actor needs to keep track of. In the simplest version, the availability numbers are attached to the rules
themselves rather than to the individual state transitions. In each time step, the actor selects an eligible
rule probabilistically and fires it. The probability a rule is selected, that probability is proportional to the
rule’s availability.

So we can make what looks like the state diagram of a Markov chain in which the rules are the states.
The current state of that chain (the rule) is the rule that is firing. We can then follow one of the arrows from
that rule to the next rule to fire. The problem is that it’s not a Markov chain; the Markov property doesn’t
hold. If rule x has just fired, then which rules are eligible can depend on which rule fired before x .

So let’s make a diagram that preserves the Markov property. Each of its states will be an ordered pair
⟨i, x⟩ , where i is an environment state and x is a rule. We can think of it as the state of the system-
environment complex. I’ll call this Markov chain the pairs chain. Conceptually, to say that the pairs chain is
in state ⟨i, x⟩ means that the environment chain is in state i and the actor has decided that the next rule
to fire is x . That means that x must be eligible, so a pair ⟨i, x⟩ is a state if and only if i ∈ Dom(x) .

Each pairs chain state has what I call its target. That’s the next environment state. To say that
environment state j is the target of ⟨i, x⟩ simply means that transition i→ j is a member of rule x .

Associated with each state-rule pair ⟨i, x⟩ is an availability number ϕix . If i ∈ Dom(x) then
ϕix is a positive number. If i /∈ Dom(x) then ϕix is zero. To obtain the rule selection probabilities we
normalize the availabilities. We define
ϕ̄i =

∑
x ϕix and πix = ϕ̄ -1

i ϕix .
In each time step, the actor selects an eligible rule to fire. It selects the rule probabilistically. The probability
of a rule being selected is in proportion to its availability. That is, if i is the current state, then the probability
that x is selected to fire is πix .

We see that the availabilities determine the state transition probability matrix P of the environment
chain. If transition i → j is in rule x , then sij = ϕix and Pij = πix . We see that P is the
row normalized S , just as it ought to be.19

Suppose ⟨i, x⟩ is the current state of the pairs chain. What is the probability that the next state is
⟨j, y⟩ ? It’s πjy if j is the target of ⟨i, x⟩ and it’s zero otherwise. So we see that the Markov property
holds in the pairs chain. The pairs chain is indeed a Markov chain. It’s easy to see that the pairs chain is
strongly connected.

Associated with each environment state i is the payoff mi . We similarly associate with each pairs
chain state ⟨i, x⟩ the payoff mix . The payoff of a pairs chain state is the same as the payoff of its target.

The pairs chain is a Markov chain much like the environment chain, and we can treat it in the same
way. In the environment chain each state i has mi , ai , ci , and bi . So in the pairs chain each state
⟨i, x⟩ has mix , aix , cix , and bix . We extend this notation to all the other items associated with the
pairs chain. In the environment chain, transition i→ j has quantities hij , vij , and sij . In the pairs
chain, transition ⟨i, x⟩ → ⟨j, y⟩ has quantities hixjy , vixjy , and sixjy . In subsection 4.3 we defined
the environment chain transition availability sij as
sij = ϕj if there is a legal transition i→ j . Otherwise, sij = 0 .
We do the same thing in the pairs chain. We define
sixjy = ϕjy if there is a legal transition ⟨i, x⟩ → ⟨j, y⟩ . Otherwise, sixjy = 0 .

In the environment chain, transition probabilities are normalized availabilities. That is, Pij = s̄ -1i sij .
This needs to be true of the pairs chain if we are going to treat the pairs chain as we treat the environment
chain. Let’s check it for transition ⟨i, x⟩ → ⟨j, y⟩ . Its normalized availability is
s̄ -1ix sixjy , where s̄ix =

∑
jy sixjy .

In the sum, sixjy is zero unless j is the target of ⟨i, x⟩ .
Suppose j is the target of ⟨i, x⟩ . Then

19 Remember that the ranges are disjoint. Just as we number the states, we can also number the rules. Then when we write
ϕix or πix , we can think of the x as a rule’s number just as the i is a state’s number. This will be relevant in subsection
5.3.

10

s̄ix =
∑
y sixjy =

∑
y ϕjy = ϕ̄j and s̄ -1ix sixjy = ϕ̄-1j ϕjy = πjy .

And as we have seen, that is indeed the probability of ⟨i, x⟩ → ⟨j, y⟩ .

5.2 Shared-Features-Actor-Critic System
We are now ready to look at the simplified actor-critic that we will analyze. For reference, I’ll call it a
shared-features-actor-critic system. It is based on the pairs chain. The actor and critic use the same features
in just the way we described in section 4. The critic uses TDz and passes the weights vector to the actor. The
actor uses equation (20) to determine availabilities and uses the parameter update we described. However,
the underlying Markov chain the system is dealing with is not the environment chain; it’s the pairs chain.
The features are features of pairs chain states. The k’th feature value of state ⟨i, x⟩ is ψixk . The
availability of transition ⟨i, x⟩ −→ ⟨j, y⟩ is sixjy . All of our discussion in section 4 holds, but we need
to change our notation throughout so that the states are pairs.

Below is a list of some of the notation changes we make. We have already seen some of them. The top
row is environment chain items in our previous discussion, and the bottom row gives the corresponding new
pairs chain version. The rest of this section will use the pairs chain notation.
environment i j mi ai ci bi z̄i w̄i âi ĉi b̂i hij vij ψik
pairs chain ⟨i, x⟩ ⟨j, y⟩ mix aix cix bix z̄ix w̄ix âix ĉix b̂ix hixjy vixjy ψixk

Of course if j is the target of ⟨i, x⟩ then aix is simply aj . So we see that if two pairs chain
states ⟨i, x⟩ and ⟨j, x⟩ have the same target then they have the same excess payoff. aix = ajx But
they don’t necessarily have the same false excess payoff. We can have âix ̸= âjx . The same holds true
for payoffs, post-values, and pre-values.

Here are the notation changes that relate to the transition given on the left:
environment i→ j sij ϕj Pij p̃i Fij
pairs chain ⟨i, x⟩ −→ ⟨j, y⟩ sixjy ϕjy πjy p̃iπix p̃iπixπjy

With the changed notation, the equations in our discussion now look like this.
s′ixjy = sixjyKw̄jy (12*)

if j is the target of ⟨i, x⟩, then âix = w̄ix −
∑
y πjyw̄jy (13*)

w̄ix = ĉix +
∑
jy p̃jπjyw̄jy (14*)

s′ixjy = sixjyK((
∑
ix p̃iπixw̄ix) + ĉjy) (15*)

z̄ix =
∑
k ψixkzk (16*)

zk increment for ⟨i, x⟩ −→ ⟨j, y⟩ is ε (z̄jy − z̄ix + aix)ψixk (17*)
w̄ix =

∑
k ψixkwk (18*)∑

ix p̃iπixψixkâix =
∑
ix p̃iπixψixkaix (19*)

if j ∈ Dom(y) then ϕjy = exp (
∑
k ψjykθk) (20*)

Remember that ϕjy = 0 if j /∈ Dom(y) .
Let’s briefly summarize the shared-features-actor-critic plot line using the pairs chain notation.
The critic uses TDz on the pairs chain.

The relevant equations are (16*), (18*), and the zk increment (17*).
The actor uses (20*) and sixjy = ϕjy to obtain the availabilities.20

It makes adjustments θ′k = Kwk to parameter vector θ , and this results in adaptive plan (12*).
This plan can be written as (15*), and we see that it is a False Natural Plan.

That plot line is the same as it was with the environment chain except that the pairs chain notation is
more complicated. So why are we looking at this more complicated pairs chain?

It’s because in the pairs chain, the feature detectors can do that necessary look into the future. Suppose
the current state is ⟨i, x⟩ , and suppose its target is j . For each possible next state ⟨j, y⟩ , the
actor needs to know the feature values ψjy1, ψjy2, ψjy3,, ψjyℓ . The actor can wait until x has fired.
Then the current state will be j . The actor now needs those feature values for j and each eligible rule
y . It knows which rules are eligible. The k’th feature detector looks at the current state j and eligible
rule y to calculate the feature value ψjyk .

The actor’s adaptive plan is a False Natural Plan, so strings of transitions in the pairs chain are behaving
like strings in an evolving population. The population is evolving as if the payoffs were the false ones. How
different are the false payoffs from the true ones? Well, equation (19*) tells us that the average payoff
allocated to a feature is the same whether the payoffs are all true or all false.

20See footnote 16.

11

5.3 Bucket Brigade
Now let’s look at a simple special case. A rule-bucket-brigade system is a shared-features-actor-critic system
in which the number of features ℓ is also the number of rules, and in which for all ixk we have
ψixk = δxk (Kronecker delta). 21

Let’s look at the critic. Equations (16*) and(18*) now read z̄ix = zx and w̄ix = wx . There is one
weight for each rule. In the actor, equation (20*) reads ϕjy = eθy .

We ask how the actor chooses which rule to fire. We define ϑy = eθy . I’m going to call ϑy the
availability of rule y . If ⟨j, y⟩ is a pair state, that is, if j ∈ Dom(y) , then we obtain ϕjy from
equation (20*), which in our special case reads ϕjy = ϑy .

Suppose the current state is j . Then
ϕjy =

{
ϑy if y is eligible.
0 if y is ineligible.

Now ϕ̄j =
∑
y ϕjy , so we can write ϕ̄j =

∑
y ϑy , where the sum is only over the eligible rules

y . Then we have πjy = ϕ̄-1j ϑy . The probability of an eligible rule being chosen is proportional to
its availability.

The availability adjustment is θ′x = Kwx . In other words, ϑ′x = ϑxKwx .

TDz operation is as follows. Suppose the transition is ⟨i, x⟩ −→ ⟨j, y⟩ . The increment to zk is
given by (17*). Since aix is aj , the increment can be written ε (zy − zx + aj) δxk . In other words,
when the firing sequence is x → y , the weight zx is incremented by ε (zy − zx + aj), where aj is
the excess payoff following the firing of x . The other weights are unchanged.

In a rule-bucket-brigade system, the weights are usually called cash balances and treated as cash. The
system’s operation is described as follows. I’ll write ϑx for the availability of rule x . The weight
zx we call the cash balance of rule x . The rule to fire is chosen probabilistically from among the eligible
rules with probabilities proportional to the rule availabilities. When a rule x fires, its cash balance zx is
incremented by ε times the resulting excess payoff. In addition, rule x passes proportion ε of its cash
to the rule that fired in the previous time step. John Holland called this method of cash balance (weight)
adjustment a bucket brigade.22 In each time step, every rule’s availability ϑx is incremented by ϑxKzx .
(That’s supposed to be close to ϑxKwx .)

This system is a simplified version of systems that have long been in use in Evolutionary Computation.

In a rule-bucket-brigade system, equation (19*) becomes∑
i

p̃i πix âix =
∑
i

p̃i πix aix . (21)

Now suppose we are in the current state and then a rule fires. The conditional probability that the rule is
x given that the state is i , that conditional probability is πix . But what is the conditional probability
that the state is i given that the rule is x ? A little Beyesian reasoning tells us that that conditional
probability is
p̃iπix(

∑
j p̃jπjx)

-1 .
So suppose x fires. What is the excess payoff after x fires? If i was the environment state before

x fired, then the excess payoff afterwards is aix . And the probability it was i before x fired is
p̃iπix(

∑
j p̃jπjx)

-1 . So the average excess payoff immediately after x fires is∑
i p̃iπix(

∑
j p̃jπjx)

-1
aix .

Equation (21) tells us that this average is the same whether we use true or false payoffs.
In a rule-bucket-brigade system, equation (13*) becomes âix = wx −

∑
y πjywy , where j is the

target of ⟨i, x⟩ . So if ⟨i, x⟩ and ⟨j, x⟩ have the same target then they have the same false payoff.
Therefore, we can assign the false payoffs directly to the environment states. Take any environment state
j . Let x be the unique rule in whose range j is located. The false payoff of j is the false payoff of
any ⟨i, x⟩ whose target is j . We can write that false payoff as âj . So now let’s look at the states
in Ran(x) , the range of rule x . The previous paragraph tells us that the average of the excess payoffs
of those states is the same whether we use true or false payoffs. A switch from true to false payoffs doesn’t
change the average of the excess payoffs of the states in Ran(x) .

21In that last equation, we are of course thinking of i , x , and k as numbers, the numbers of a state, a rule, and a feature
respectively. (see footnote 19.)

22This is a simplified bucket brigade. Holland describes a more complicated version. [5]

12

The situation with false post-values is more straightforward. Let ω be the average value estimate. That
is, ω =

∑
jy p̃jπjywy . Then equation (14*) reads ĉix = wx−ω . We see that the false post-value

of ⟨i, x⟩ is independent of i . As we did with false payoffs, we can assign the false post-values to
the environment states. The states in a rule’s range will all have the same false post-values. Indeed we can
assign the false post-values to the rules themselves. Let’s write ĉx for the false post-value of rule x . We
have ĉx = wx−ω , so the rule false post-values are simply the value estimates normalized by subtraction
of the average.

I call a rule level if every state in its range has the same post-value. A switch from true payoffs to false
payoffs makes every rule level without changing the average excess payoff of any range.

5.4 Bucket Brigade on a Markov Chain
Let’s take a moment to look at a very special rule-bucket-brigade case. In this special case, the number
of rules is the same as the number of states. For each state there is a rule that consists of all the legal
transitions to that state. We can think of the rule availability as the availabilty of that state. We simply
have a Markov chain with state availabilities. The actor chooses the next state transition.

In Subsection 5.3 we said that in each rule’s range, the average of the excess payoffs is the same whether
we use true or false payoffs. But here, every range is a singleton, so the true and false excess payoffs are the
same, and the true and false post-values are the same. We said that wx − ω was the false post-value
of x so here it is also the true post value. On a Markov chain, the bucket brigade converges in the average
step sense to the correct post-values.23

5.5 The Rule Chain and Levelling the Rules
Now let’s return to rule-bucket-brigade systems in general. Remember that ĉx = wx − ω . The bucket
brigade converges to the false post-values ĉx .

Let Pxy be the conditional probability that the next rule to fire will be y given that x is the rule that
just fired. We can imagine a Markov chain whose states are the rules and whose transition probabilities are
the Pxy probabilities. Let’s call this the rule chain. (The Markov property holds on the rules in the rule
chain, but it doesn’t hold on the rules in the system.) We note that the absolute probability of state x in
the rule chain is the same as the probability that rule x fires in the rule-bucket-brigade system, namely∑
i p̃iπix .
Let the payoff attached to each rule chain state be the average of the payoff elicited by the firing of that

rule. If we run the bucket brigade on the rule chain, its average step is the same as when we run the bucket
brigade on the rule based system, so it converges (in the average step sense) to the same value estimates
wx . And on a Markov chain, the bucket brigade converges to the correct post-values. It follows that the
true post-value of state x in the rule chain is the same as what we earlier called ĉx , the false post-value of
rule x in the rule based system. The bucket brigade is giving us rule chain post-values, not true post-values.

Another way of thinking of it is this. Suppose the environment chain could change state within a rule’s
range. In each time step, before the proper state transition, the environment looks at the rule range that
the current state is in. It then selects a new state at random from that range, and the state transition
proceeds from that new state. The selection is probabilistic with probabilities proportional to the absolute
state probabilities p̃i . This makes each rule level. In fact, it makes the state post-values equal to the
false post-values.

5.6 Parallelism
Look at the shared-features-actor-critic system and note the inherent parallelism in equation (20*).
We won’t pursue the parallelism properly here, but the basic idea is this.
If we define ϑk = eθk then equation (20*) can be written
ϕix =

∏
k ϑ

ψixk

k .
Let j be the target of ⟨i, x⟩ . Now let’s pretend we have ℓ separate rules, and that ϑk is the
“probability” of rule k firing. The symbol x stands for a particular salvo of rules firing. If the current
state is i then we have the following. The number ψixk is the number of shots rule k fires in salvo x .
From ϕix we get the probability πix of salvo x . If the actor fires salvo x , that causes transition
i → j . The adaptive adjustment θ′k = Kwk becomes ϑ′k = ϑkKwk . Anyway, that’s a rough

23In [11] we proved directly that on a Markov chain, the bucket brigade converges in the average step sense to the correct
post-values.

13

sketch of the basic idea, This all resembles the situation in evolving populations of gene strings, where a
gene string (organism) causes changes (transitions) in its environment.24

6 The Adaptive Hierarchy – Freeloaders
As we have said, the shared-features-actor-critic system uses a False Natural Plan. This means that for all
transition strings σ , the fourth condition of Theorem 1 holds, but with υσ replaced by the false total
string value, which we write as υ̂σ . We have φ′

σ = φσKυ̂σ .
The definition of υ̂σ here is like equation (9) except that the payoffs and values are false and the states

are pairs. For example, in place of (i → j) in equation (8) we might have ⟨i, x⟩ −→ ⟨jy⟩ . In that
case, ai and aj in equation (9) would be replaced by the false payoffs âix and âjy .

The equation φ′
σ = φσKυ̂σ holds for any string of any length, and so it holds for all of its

substrings. Just as in evolving populations of gene strings, the strings and substrings form a hierarchy, and
the adaptation equation φ′

σ = φσKυ̂σ holds at every level of the hierarchy.25

It is instructive to look at rule-bucket-brigade systems because they are comparatively simple, so some
of the issues are clearer. The false payoffs and false values of the pairs are the same as of their targets,
so in equations we can often replace the pairs with their targets. The string σ then becomes a string of
environment state transitions, and its false total value is what the true value would be if the payoffs were
the false ones. The false value of the string in equation (8) is simply

υ̂σ = b̂α + âβ + âi + âj + âδ + ĉε (22)

The string frequencies are changing much as they do in an evolving population of gene strings. There is a
virtual population of transition strings. The population structure is hierarchical, with substring frequencies
changing in the same way as do the frequencies of the longer strings. But the fly in the ointment is that
success is measured in terms of false payoff, not true payoff.

Consider a string that has low true total value, but high false total value. Such a culprit string will
unfairly increase its prevalence in the virtual population, and this can cause m̄ to drop.

Equation (9) shows us that much of a string’s value is the excess payoffs received when the string is
executed. In (22) these payoffs are false payoffs. If a false payoff is higher than the corresponding true
payoff, this can give the string an unfairly high false value. For example, âi might be higher than ai . A
switch from true payoffs to false payoffs is giving âi − ai undeserved extra payoff to the culprit string.

How big can this undeserved payoff âi − ai be? Let x be the rule in whose range i is located. We
have seen that the switch from true to false payoffs doesn’t change the average of the excess payoffs of the
states in Ran(x) . So the undeserved payoff âi − ai is not created out of thin air. It’s stolen from the
other states in Ran(x) . The culprit steals that undeserved payoff from victim strings that pass through
Ran(x) . The victims produce the payoff, which the culprit then steals. In Evolutionary Computation we
call the culprit a freeloader.26

Freeloaders distort the adaptive process. They can cause m̄ to head continually downhill. They
afflict adaptive systems everywhere, in evolutionary biology, in evolutionary computation, in reinforcement
learning, and of course in economics. They are easy to see when the critic uses the bucket brigade, but with
few exceptions they occur whenever a critic uses a temporal difference method. Their presence means that
the critic produces biased value estimates. There are many important ways of combatting freeloaders, but
generally speaking the freeloaders do not go away. Further discussion of freeloading is beyond the scope of
this paper.

Temporal difference methods are excellent because they take advantage of underlying Markov structure
to implicitly increase sample size and so reduce sampling error noise. This is crucial. Otherwise, to reduce
noise, adaptation would have to slow to a snail’s pace. Since freeloading is inherent in these excellent
methods, understanding its detrimental effects is important.

7 Problems
Of course the shared-features-actor-critic system has problems and inadequacies. These are beyond the scope
of this paper, but let’s just touch on a couple of them.

24Holland often had rules firing in parallel, but his parallel bucket brigades were rather ad hoc. He should have tried TDz on
the parallel formulation we have given here. Evolutionary Computation can learn from Reinforcement Learning.

25In evolution, sexual recombination distorts the equation for the longer strings, and there are many complications.
26A simple explanation of freeloaders in the bucket brigade is in [10]. In that early paper, bucket brigade freeloaders were

called cannibals. Thanks to Dave Goldberg, we now call them freeloaders, the term used in other fields.

14

The big problem is of course the freeloading inherent in any temporal difference critic, but there are other
problems more amenable to attack. One is an actor problem, the possible spreading out over time of the
entries in the θ vector. Entries could become too large to be practical. The problem can be particularly
bad if there is redundancy in the feature detectors.

For example, suppose ψix2 = ψix3 for all ⟨i, x⟩ . Then θ2 and θ3 could diverge without even
affecting the probabilities since the probabilities depend only on θ2 + θ3 . The redundancy doesn’t occur
in rule-bucket-brigade systems, but it does occur in other shared-features-actor-critic systems.

If there is redundancy, that means that the function from weights vectors to post-value estimate vectors
(equation (18*)) has a non-trivial kernel. It turns out that TDz with a non-zero but vanishing discount27

gives us an appropriate weights vector that is orthogonal to the kernel. That removes most of the redundancy.
If there is a weights vector η that gives us a post-value estimate of 1 for every state, then there is still
one remaining dimension of redundancy. Subtracting a multiple of η from θ leaves the probabilities
unchanged and combats that redundancy. Producing a copy of η looks tricky, but possible. (See [13] for
proofs relevant to all this.)

Sutton and Barto have a different approach. [8, page 399] Their critic uses a discount28, so that gets rid
of the redundancy associated with the kernel. And their actor uses false choice value where ours uses false
post-value.29 That gets rid of the remaining dimension of redundancy.

Conceptually, their actor and critic use two different weights vectors. Their actor uses its own weights
vector to update its θ vector. The actor produces its weights vector using the false choice values it gets
from the critic, but it uses an increment different from that used by the critic. The result is a vector giving
value estimates that resemble what population genetics calls genic values. Recall our redundancy example
where it was the sum θ2 + θ3 that determined the probabilities. Here, the θ2 and θ3 entries are both
replaced by the sum. Problem gone. Actually, the actor’s weights vector doesn’t explicitly appear, and the
increments go directly to θ .

Often features relevant to the actor are different from features relevant to the critic. Sutton and Barto’s
actor uses different features from the those the critic uses. Sutton and Barto’s actor has other complications,
and my comments about it may not be totally correct. It’s certainly more general than I’ve implied.

Returning to our shared-features-actor-critic system, we note that just because θk is increasing, that
doesn’t mean that it will necessarily continue to increase without bound. As θ changes, the probabilities
change, and so do the true values, the false values, and the limit weights vector w .

In the shared-features-actor-critic that we have described, the environment itself is deterministic. Given
the current state and the rule that fires, the next environment state is determined. But in the systems
described by Sutton and Barto [8], the next environment state is chosen probabilistically. It’s as if the
actor and environment take turns making probabilisitic choices. Our analysis doesn’t extend directly to such
systems because the probabilities used by the environment are kept constant (clamped).

One way of extending the analysis to such systems is by introducing a new kind of false payoff that makes
the environment think there is no point in changing its probabilities. The new false payoffs and old false
payoffs are on different states.

8 Thoughts
In this paper we used the time symmetric approach to describe strings of actions in time in much the
same way that evolutionary biology describes strings of genes in space. Here we have virtual populations of
strings of actions just as evolutionary biology has populations of strings of genes. The populations evolve
in similar but not identical ways. Both populations are hierarchical, both suffer from freeloading, and the
basic equation of frequency change of strings and substrings is the same.

Different fields of study see adaptive systems from different points of view, but the basic issues are the
same. In this paper we looked at the basic issues from at least two equivalent viewpoints, which we might
call the Reinforcement Learning viewpoint and the evolution viewpoint. From the Reinforcement Learning
viewpoint we see a system choosing successive actions probabilistically and modifying those probabilities
through learning. From the evolution viewpoint we see a hierarchical population of strings and substrings
and we see the string frequencies changing through evolution. Two equivalent views, one flat and one
hierarchical, but it’s the same system.

27The γ in footnote 4 is close to 1.
28See footnote 4.
29Note that s′ij = sijK ĥij is a False Natural Plan.

15

All this was outlined by John Holland in his 1975 book, Adaptation in Natural and Artificial Systems.
[4] The problem back then was that crucial steps in the formalization of the equivalence were missing. To
obtain the basic equivalence in Theorem 1, we have to think of action values as including pre-values as
well as post-values. Without that time-symmetric insight, the equations of learning and evolution remained
stubbornly different, and the fields of Reinforcement Learning and Evolutionary Computation separated and
drifted apart. Each field quite properly ignored the other, because each had little to contribute to the other.
Until now. Now it is possible to re-establish contact.

There is an underlying hierarchy in learning that is in some respects formally equivalent to the hierarchy
in evolving populations. Some Reinforcement Learning systems have an explicit hierarchy. [1] In what ways
does this differ from a hierarchy that may be already implicit in an evolution view of the system? Is a
successful explicit hierarchy sometimes one that elaborates on a hierarchy that is already there?

The Group Selection literature has shown us how an evolving population can be equivalently described in
both a hierarchical fashion and flat fashion.30 It has much to say about the role of freeloading and altruism
(negative freeloading).31

In establishing the equivalences that Holland foresaw, it is the temporal difference methods that have
been the most recalcitrant. But in this paper we have seen that even they yield to the time symmetric
approach.

Holland was right.

References
[1] Andrew G. Barto and Sridhar Mahadevan. Recent Advances in Hierarchical Reinforcement Learning.

Discrete Event Dynamic Systems: Theory and Applications, 13:343–379, 2003.

[2] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Looking back on the actor-critic
architecture. IEEE Trans. Syst., Man, Cybern., SMC-51(1):40–50, 2021.

[3] F. R. Gantmacher. Applications of the Theory of Matrices. Interscience Publishers, New York, 1959.

[4] J. H. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor, 1975.

[5] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: Processes of Inference,
Learning and Discovery. MIT Press, Cambridge, MA, 1986.

[6] J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.

[7] Elliott Sober and David Sloan Wilson. Unto Others, the Evolution and Psychology of Unselfish Behavior.
Harvard University Press, Cambridge, Massachusetts, 1999.

[8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, Second edition.
MIT Press, Cambridge, Mass., 2018.

[9] T. H. Westerdale. A Reward Scheme for Production Systems with Overlapping Conflict Sets. IEEE
Trans. Syst., Man, Cybern., SMC-16(3):369–383, 1986.

[10] T. H. Westerdale. A defense of the bucket brigade. In J. David Schaffer, editor, Proceedings of the
Third International Conference on Genetic Algorithms, pages 282–290, San Mateo, CA, 1989. Morgan
Kaufmann.

[11] T. H. Westerdale. Quasimorphisms or queasymorphisms? Modeling finite automaton environments.
In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 128–147, San Mateo, CA,
1991. Morgan Kaufmann.

[12] Tom Westerdale. Learning Resembles Evolution – the Markov Case. pages 1–12, 2025.
unpublished. URL https://www.tomwesterdale.net/briefsymmetric.pdf.

[13] Tom Westerdale. Average Step Convergence of Undiscounted Linear-TD(0). pages 1–19, 2025.
unpublished. URL https://www.tomwesterdale.net/briefundiscounted.pdf.

[14] Tom Westerdale. Bucket Brigade Convergence on Markov Chains. pages 1–50, 2025.
unpublished. URL https://www.tomwesterdale.net/convergence.pdf.

30The flat value is Hamilton’s inclusive fitness.
31See Part 1 of [7]

16

